859 resultados para energy cost of activity
Resumo:
Purpose: The aim of this study was to assess the accuracy of a (CO2)-C-13 breath test for the prediction of short-duration energy expenditure. Methods: Eight healthy volunteers walked at 1.5 km.h(-1) for 60 min followed by 60-min recovery. During this time, the energy cost of physical activity was measured via respiratory calorimetry and a C-13 bicarbonate breath test. A further eight subjects were tested using the same two methods during a 60-min cycle at 0.5 kp. 30 ipm followed by a 60-min recovery. The rate of appearance of (CO2)-C-13, (RaCO2) was measured and the mean ratio, (V) over dot CO2/RaCO2 was used to calculate energy expenditure using the isotopic approach. Results: As would be expected, there was a significant difference in the energy cost of walking and cycling using both methods (P < 0.05). However. no significant differences were observed between respiratory calorimetry and the isotope method for measurement of energy expenditure while walking or cycling. Conclusions: These data suggest that the C-13 breath test is a valid method that can be used to measure the energy cost of short duration physical activity in a field setting.
Resumo:
Objective: The purpose of this study was to compare the energy cost of standardized physical activity (ECA) between patients with cystic fibrosis (CF) and healthy control subjects. Design: Cross-sectional study using patients with CF and volunteers from the community. Setting: University laboratory. Subjects: Fifteen patients (age 24.6 +/- 4.6 y) recruited with consent from their treating physician and 16 healthy control subjects (age 25.3 +/- 3.2) recruited via local advertisement. Interventions. Patients and controls walked on a computerised treadmill at 1.5 km/h for 60 min followed by a 60 min recovery period and, on a second occasion, cycled at 0.5 kp (kilopond), 30 rpm followed by a 60 min recovery. The ECA was measured via indirect calorimetry. Resting energy expenditure (REE), nutritional status, pulmonary function and genotype were determined. Results: The REE in patients was significantly greater than the REE measured in controls (P = 0.03) and was not related to the severity of lung disease or genotype. There was a significant difference between groups when comparing the ECA for walking kg root FFM (P = 0.001) and cycling kg root FFM (P = 0.04). The ECA for each activity was adjusted (ECA(adj)) for the contribution of REE (ECA kJ kg root FFM 120 min(-1) - REE kJ kg root FFM 120 min(-1)). ECA(adj) revealed a significant difference between groups for the walking protocol (P = 0.001) but no difference for the cycling protocol (P = 0.45). This finding may be related to the fact that the work rate during walking was more highly regulated than during cycling. Conclusions ECA in CF is increased and is likely to be explained by an additional energy-requiring component related to the exercise itself and not an increased REE. Sponsorship. The Prince Charles Hospital Foundation; MLR was in receipt of a QUTPRA Scholarship.
Resumo:
This study tested whether the lower economy of walking in healthy elderly subjects is due to greater gait instability. We compared the energy cost of walking and gait instability (assessed by stride to stride changes in the stride time) in octogenarians (G80, n = 10), 65-yr-olds (G65, n = 10), and young controls (G25, n = 10) walking on a treadmill at six different speeds. The energy cost of walking was higher for G80 than for G25 across the different walking speeds (P < 0.05). Stride time variability at preferred walking speed was significantly greater in G80 (2.31 +/- 0.68%) and G65 (1.93 +/- 0.39%) compared with G25 (1.40 +/- 0.30%; P < 0.05). There was no significant correlation between gait instability and energy cost of walking at preferred walking speed. These findings demonstrated greater energy expenditure in healthy elderly subjects while walking and increased gait instability. However, no relationship was noted between these two variables. The increase in energy cost is probably multifactorial, and our results suggest that gait instability is probably not the main contributing factor in this population. We thus concluded that other mechanisms, such as the energy expenditure associated with walking movements and related to mechanical work, or neuromuscular factors, are more likely involved in the higher cost of walking in elderly people.
Resumo:
To evaluate whether an activity monitor based on body acceleration measurement can accurately assess the energy cost of the human locomotion, 12 subjects walked a combination of three different speeds (preferred speed +/- 1 km/h) and seven slopes (-15 to +15% by steps of 5%) on a treadmill. Body accelerations were recorded using a triaxial accelerometer attached to the low back. The mean of the integral of the vector magnitude (norm) of the accelerations (mIAN) was calculated. VO2 was measured using continuous indirect calorimetry. When the results were separately analysed for each incline, mIAN was correlated to VO2 (average r = 0.87, p<0.001, n = 36). VO2 was not significantly correlated to mIAN when data were globally analysed (n = 252). Large relative errors occurred when predicted VO2 (estimated from data of level walking) was compared with measured VO2 for different inclines (-53% at +15% incline, to +55% at -15% incline). It is concluded that without an external measurement of the slope, the standard method of analysis of body accelerations cannot accurately predict the energy cost of uphill or downhill walking.
Resumo:
The effect of graded levels of hyperinsulinemia on energy expenditure, while euglycemia was maintained by glucose infusion, was examined in 22 healthy young male volunteers by using the euglycemic insulin clamp technique in combination with indirect calorimetry. Insulin was infused at five rates to achieve steady-state hyperinsulinemic plateaus of 62 +/- 4, 103 +/- 5, 170 +/- 10, 423 +/- 16, and 1,132 +/- 47 microU/ml. Total body glucose uptake during each of the five insulin clamp studies was 0.41, 0.50, 0.66, 0.74, and 0.77 g/min, respectively. Glucose storage (calculated from the difference between total body glucose uptake minus total glucose oxidation) was 0.25, 0.29, 0.43, 0.49, and 0.52 g/min for each group, respectively, and represented over 60-70% of total glucose uptake. The net increment in energy expenditure after intravenous glucose was 0.08, 0.10, 0.14, 0.17, and 0.23 kcal/min, respectively. Throughout the physiological and supraphysiological range of insulinemia, there was a significant relationship (r = 0.95, P less than 0.001) between the increment in energy expenditure and glucose storage, indicating an energy cost of 0.45 kcal/g glucose stored. However, at each level of hyperinsulinemia, the theoretical value for the energy cost of glucose storage (assuming that all of the glucose is stored in the form of glycogen) could account for only 45-63% of the actual increase in energy expenditure that was measured by indirect calorimetry. These results indicate that factors in addition to glucose storage as glycogen must be responsible for the increase in energy expenditure that accompanies glucose infusion.
Resumo:
Hsp70-Hsp40-NEF and possibly Hsp100 are the only known molecular chaperones that can use the energy of ATP to convert stably pre-aggregated polypeptides into natively refolded proteins. However, the kinetic parameters and ATP costs have remained elusive because refolding reactions have only been successful with a molar excess of chaperones over their polypeptide substrates. Here we describe a stable, misfolded luciferase species that can be efficiently renatured by substoichiometric amounts of bacterial Hsp70-Hsp40-NEF. The reactivation rates increased with substrate concentration and followed saturation kinetics, thus allowing the determination of apparent V(max)' and K(m)' values for a chaperone-mediated renaturation reaction for the first time. Under the in vitro conditions used, one Hsp70 molecule consumed five ATPs to effectively unfold a single misfolded protein into an intermediate that, upon chaperone dissociation, spontaneously refolded to the native state, a process with an ATP cost a thousand times lower than expected for protein degradation and resynthesis.
Resumo:
This study investigated behavioral adaptability, which could be defined as a blend between stability and flexibility of the limbs movement and their inter-limb coordination, when individuals received informational constraints. Seven expert breaststroke swimmers performed three 200-m in breaststroke at constant submaximal intensity. Each trial was performed randomly in a different coordination pattern: 'freely-chosen', 'maximal glide' and 'minimal glide'. Two underwater and four aerial cameras enabled 3D movement analysis in order to assess elbow and knee angles, elbow-knee pair coordination, intra-cyclic velocity variations of the center of mass, stroke rate and stroke length and inter-limb coordination. The energy cost of locomotion was calculated from gas exchanges and blood lactate concentration. The results showed significantly higher glide, intra-cyclic velocity variations and energy cost under 'maximal glide' compared to 'freely-chosen' instructional conditions, as well as higher reorganization of limb movement and inter-limb coordination (p<0.05). In the 'minimal glide' condition, the swimmers did not show significantly shorter glide and lower energy cost, but they exhibited significantly lower deceleration of the center of mass, as well as modified limb movement and inter-limb coordination (p<0.05). These results highlight that a variety of structural adaptations can functionally satisfy the task-goal.
Resumo:
Objective: To determine the nervous activation, muscle strength, and biomechanical parameters that influence the cost of walking in older fallers and non-fallers. Methods: Maximal voluntary isokinetic torque was measured for the hip, knee and ankle of older women. Oxygen consumption was measured at rest and during 8 min of walking at self-selected speed. An additional minute of walking was performed to collect kinematic variables and the electromyographic signal of trunk, hip, knee, and ankle muscles, which was analyzed by the linear envelope. Cost of walking was calculated by subtracting resting body mass-normalized oxygen consumption from walking body mass-normalized oxygen consumption. Stride time and length, and ankle and hip range of motion were calculated from kinematic data. Findings: Older adult fallers had 28% lower knee extensor strength (p = 0.02), 47% lower internal oblique activation at heel contact (p = 0.03), and higher coactivation between tibialis anterior and gastrocnemius lateralis in each of the gait phases (p < 0.05). For fallers, a higher activation of gluteus maximus was associated with a higher cost of walking (r = 0.55, p < 0.05 and r = 0.71, p < 0.01, before and after heel contact, respectively). For non-fallers, an association between cost of walking and age (r = 0.60, p = 0.01) and cost of walking and thigh muscle coactivation (r = 0.53, p = 0.01) existed. Interpretation: This study demonstrated that there may be links between lower-extremity muscle weakness, muscle activation patterns, altered gait, and increased cost of walking in older fallers. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Being able to compare the energy cost of physical activity across and between populations is important. However, energy expenditure is related to body size, so it is necessary to appropriately adjust for differences in body size when comparisons are made. This study examined the relationship between the daily energy cost of activity and body weight in 47 children aged 6-10 years. Log-log regression showed weight(1.0) to be an inappropriate adjustment for activity energy expenditure in children, with a more valid adjustment being weight(0.3). Clearly, both weight dependent and non-weight dependent activities are part of everyday living in children. This balance influences how energy expenditure is correctly adjusted for body size. Investigators interpreting data of energy expenditure in children from children of different body sizes need to take this into consideration.
Resumo:
There is currently some debate about whether the energy expenditure of domestic tasks is sufficient to confer health benefits. The aim of this study was therefore to measure the energy cost of five activities commonly undertaken by mothers of young children. Seven women with at least one child younger than five years of age spent 15 minutes in each of the following activities: sitting quietly, vacuum cleaning, washing windows, walking at moderate pace (approx 5km/hour), walking with a stroller and grocery shopping in a super-market. Each of the six 'trials' was completed on the same day, in random order. A carefully calibrated portable gas analyser was used to measure oxygen uptake during each activity, and data were converted to units of energy expenditure (METS). Vacuum cleaning, washing windows and walking with and without a stroller were found to be 'moderate intensity activities' (3 to 6 METs), but supermarket shopping did not reach this criterion. The MET values for these activities were similar to those reported in the Compendium of Physical Activities (Ainsworth et al., 2000). However, the energy expenditures of walking, both with and without a stroller, were higher than those reported in the Compendium. The findings suggest that some of the tasks associated with domestic caring duties are conducted at an intensity which is sufficient to confer some health benefit. Such benefits will only accrue however if the daily duration of these activities is sufficient to meet current guidelines.
Resumo:
BACKGROUND: Ergonomic unstable shoes, which are widely available to the general population, could increase daily non-exercise activity thermogenesis as the result of increased muscular involvement. We compared the energy expenditure of obese patients during standing and walking with conventional flat-bottomed shoes versus unstable shoes.¦METHODS: Twenty-nine obese patients were asked to stand quietly and to walk at their preferred walking speed while wearing unstable or conventional shoes. The main outcome measures were metabolic rate of standing and gross and net energy cost of walking, as assessed with indirect calorimetry.¦RESULTS: Metabolic rate of standing was higher while wearing unstable shoes compared with conventional shoes (1.11±0.20 W/kg(-1)vs 1.06±0.23 W/kg(-1), P=.0098). Gross and net energy cost of walking were higher while wearing unstable shoes compared with conventional shoes (gross: 4.20±0.42 J/kg(-1)/m(-1)vs 4.01±0.39 J/kg(-1)/m(-1), P=.0035; net: 3.37±0.41 J/kg(-1)/m(-1)vs 3.21±0.37 J/kg(-1)/m(-1); P=.032).¦CONCLUSION: In obese patients, it is possible to increase energy expenditure of standing and walking by means of ergonomic unstable footwear. Long-term use of unstable shoes may eventually prevent a positive energy balance.
Resumo:
BACKGROUND: Ergonomic unstable shoes, which are widely available to the general population, could increase daily non-exercise activity thermogenesis as the result of increased muscular involvement. We compared the energy expenditure of obese patients during standing and walking with conventional flat-bottomed shoes versus unstable shoes. METHODS: Twenty-nine obese patients were asked to stand quietly and to walk at their preferred walking speed while wearing unstable or conventional shoes. The main outcome measures were metabolic rate of standing and gross and net energy cost of walking, as assessed with indirect calorimetry. RESULTS: Metabolic rate of standing was higher while wearing unstable shoes compared with conventional shoes (1.11 ± 0.20 W/kg(-1) vs 1.06 ± 0.23 W/kg(-1), P=.0098). Gross and net energy cost of walking were higher while wearing unstable shoes compared with conventional shoes (gross: 4.20 ± 0.42 J/kg(-1)/m(-1)vs 4.01 ± 0.39 J/kg(-1)/m(-1), P=.0035; net: 3.37 ± 0.41 J/kg(-1)/m(-1) vs 3.21 ± 0.37 J/kg(-1)/m(-1); P=.032). CONCLUSION: In obese patients, it is possible to increase energy expenditure of standing and walking by means of ergonomic unstable footwear. Long-term use of unstable shoes may eventually prevent a positive energy balance.
Resumo:
The combined 24-h energy expenditure (24-h EE) of mother and child was measured with a respiratory chamber (indirect calorimeter) in a group of 16 lactating Gambian women and was compared with that of a control group of 16 nonpregnant, nonlactating (NPNL) Gambian women. Breast-milk production (738 +/- 47 g/d: mean +/- SE) was adequate to allow a normal rate of growth of their 2-mo-old babies (28.0 +/- 2.4 g/d). The combined 24-h EE (mother and child) was higher (8381 +/- 180 kJ/d. P less than 0.001) than that of NPNL women (6092 +/- 121 kJ/d). Two-thirds of this differences could be attributed to the child's EE and one-third to a greater spontaneous physical activity of lactating women. The energy retained by the child for growth in conjunction with the calorimetric measurements allowed the calculation of the extra energy requirements for lactation, which were found to be 2100 kJ/d. These results confirm the values of the current dietary recommendations for lactation, based on the energy cost of milk production.