883 resultados para empirical data


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the existence of free software and pedagogical guides, the use of data envelopment analysis (DEA) has been further democratized in recent years. Nowadays, it is quite usual for practitioners and decision makers with no or little knowledge in operational research to run themselves their own efficiency analysis. Within DEA, several alternative models allow for an environment adjustment. Five alternative models, each of them easily accessible to and achievable by practitioners and decision makers, are performed using the empirical case of the 90 primary schools of the State of Geneva, Switzerland. As the State of Geneva practices an upstream positive discrimination policy towards schools, this empirical case is particularly appropriate for an environment adjustment. The alternative of the majority of DEA models deliver divergent results. It is a matter of concern for applied researchers and a matter of confusion for practitioners and decision makers. From a political standpoint, these diverging results could lead to potentially opposite decisions. Grâce à l'existence de logiciels en libre accès et de guides pédagogiques, la méthode data envelopment analysis (DEA) s'est démocratisée ces dernières années. Aujourd'hui, il n'est pas rare que les décideurs avec peu ou pas de connaissances en recherche opérationnelle réalisent eux-mêmes leur propre analyse d'efficience. A l'intérieur de la méthode DEA, plusieurs modèles permettent de tenir compte des conditions plus ou moins favorables de l'environnement. Cinq de ces modèles, facilement accessibles et applicables par les décideurs, sont utilisés pour mesurer l'efficience des 90 écoles primaires du canton de Genève, Suisse. Le canton de Genève pratiquant une politique de discrimination positive envers les écoles défavorisées, ce cas pratique est particulièrement adapté pour un ajustement à l'environnement. La majorité des modèles DEA génèrent des résultats divergents. Ce constat est préoccupant pour les chercheurs appliqués et perturbant pour les décideurs. D'un point de vue politique, ces résultats divergents conduisent à des prises de décision différentes selon le modèle sur lequel elles sont fondées.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the existence of free software and pedagogical guides, the use of Data Envelopment Analysis (DEA) has been further democratized in recent years. Nowadays, it is quite usual for practitioners and decision makers with no or little knowledge in operational research to run their own efficiency analysis. Within DEA, several alternative models allow for an environmental adjustment. Four alternative models, each user-friendly and easily accessible to practitioners and decision makers, are performed using empirical data of 90 primary schools in the State of Geneva, Switzerland. Results show that the majority of alternative models deliver divergent results. From a political and a managerial standpoint, these diverging results could lead to potentially ineffective decisions. As no consensus emerges on the best model to use, practitioners and decision makers may be tempted to select the model that is right for them, in other words, the model that best reflects their own preferences. Further studies should investigate how an appropriate multi-criteria decision analysis method could help decision makers to select the right model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The capability of a feature model of immediate memory (Nairne, 1990; Neath, 2000) to predict and account for a relationship between absolute and proportion scoring of immediate serial recall when memory load is varied (the list-length effect, LLE) is examined. The model correctly predicts the novel finding of an LLE in immediate serial order memory similar to that observed with free recall and previously assumed to be attributable to the long-term memory component of that procedure (Glanzer, 1972). The usefulness of formal models as predictive tools and the continuity between short-term serial order and longer term item memory are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chlamydia trachomatis is the most common bacterial sexually transmitted infection (STI) in many developed countries. The highest prevalence rates are found among young adults who have frequent partner change rates. Three published individual-based models have incorporated a detailed description of age-specific sexual behaviour in order to quantify the transmission of C. trachomatis in the population and to assess the impact of screening interventions. Owing to varying assumptions about sexual partnership formation and dissolution and the great uncertainty about critical parameters, such models show conflicting results about the impact of preventive interventions. Here, we perform a detailed evaluation of these models by comparing the partnership formation and dissolution dynamics with data from Natsal 2000, a population-based probability sample survey of sexual attitudes and lifestyles in Britain. The data also allow us to describe the dispersion of C. trachomatis infections as a function of sexual behaviour, using the Gini coefficient. We suggest that the Gini coefficient is a useful measure for calibrating infectious disease models that include risk structure and highlight the need to estimate this measure for other STIs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An increasing number of neuroimaging studies are concerned with the identification of interactions or statistical dependencies between brain areas. Dependencies between the activities of different brain regions can be quantified with functional connectivity measures such as the cross-correlation coefficient. An important factor limiting the accuracy of such measures is the amount of empirical data available. For event-related protocols, the amount of data also affects the temporal resolution of the analysis. We use analytical expressions to calculate the amount of empirical data needed to establish whether a certain level of dependency is significant when the time series are autocorrelated, as is the case for biological signals. These analytical results are then contrasted with estimates from simulations based on real data recorded with magnetoencephalography during a resting-state paradigm and during the presentation of visual stimuli. Results indicate that, for broadband signals, 50–100 s of data is required to detect a true underlying cross-correlations coefficient of 0.05. This corresponds to a resolution of a few hundred milliseconds for typical event-related recordings. The required time window increases for narrow band signals as frequency decreases. For instance, approximately 3 times as much data is necessary for signals in the alpha band. Important implications can be derived for the design and interpretation of experiments to characterize weak interactions, which are potentially important for brain processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An increasing number of neuroimaging studies are concerned with the identification of interactions or statistical dependencies between brain areas. Dependencies between the activities of different brain regions can be quantified with functional connectivity measures such as the cross-correlation coefficient. An important factor limiting the accuracy of such measures is the amount of empirical data available. For event-related protocols, the amount of data also affects the temporal resolution of the analysis. We use analytical expressions to calculate the amount of empirical data needed to establish whether a certain level of dependency is significant when the time series are autocorrelated, as is the case for biological signals. These analytical results are then contrasted with estimates from simulations based on real data recorded with magnetoencephalography during a resting-state paradigm and during the presentation of visual stimuli. Results indicate that, for broadband signals, 50-100 s of data is required to detect a true underlying cross-correlations coefficient of 0.05. This corresponds to a resolution of a few hundred milliseconds for typical event-related recordings. The required time window increases for narrow band signals as frequency decreases. For instance, approximately 3 times as much data is necessary for signals in the alpha band. Important implications can be derived for the design and interpretation of experiments to characterize weak interactions, which are potentially important for brain processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Article Accepted Date: 29 May 2014 Acknowledgements The authors gratefully acknowledge the support of the Cognitive Science Society for the organisation of the Workshop on Production of Referring Expressions: Bridging the Gap between Cognitive and Computational Approaches to Reference, from which this special issue originated. Funding Emiel Krahmer and Albert Gatt thank The Netherlands Organisation for Scientific Research (NWO) for VICI grant Bridging the Gap between Computational Linguistics and Psycholinguistics: The Case of Referring Expressions (grant number 277-70-007).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the study of the spatial characteristics of the visual channels, the power spectrum model of visual masking is one of the most widely used. When the task is to detect a signal masked by visual noise, this classical model assumes that the signal and the noise are previously processed by a bank of linear channels and that the power of the signal at threshold is proportional to the power of the noise passing through the visual channel that mediates detection. The model also assumes that this visual channel will have the highest ratio of signal power to noise power at its output. According to this, there are masking conditions where the highest signal-to-noise ratio (SNR) occurs in a channel centered in a spatial frequency different from the spatial frequency of the signal (off-frequency looking). Under these conditions the channel mediating detection could vary with the type of noise used in the masking experiment and this could affect the estimation of the shape and the bandwidth of the visual channels. It is generally believed that notched noise, white noise and double bandpass noise prevent off-frequency looking, and high-pass, low-pass and bandpass noises can promote it independently of the channel's shape. In this study, by means of a procedure that finds the channel that maximizes the SNR at its output, we performed numerical simulations using the power spectrum model to study the characteristics of masking caused by six types of one-dimensional noise (white, high-pass, low-pass, bandpass, notched, and double bandpass) for two types of channel's shape (symmetric and asymmetric). Our simulations confirm that (1) high-pass, low-pass, and bandpass noises do not prevent the off-frequency looking, (2) white noise satisfactorily prevents the off-frequency looking independently of the shape and bandwidth of the visual channel, and interestingly we proved for the first time that (3) notched and double bandpass noises prevent off-frequency looking only when the noise cutoffs around the spatial frequency of the signal match the shape of the visual channel (symmetric or asymmetric) involved in the detection. In order to test the explanatory power of the model with empirical data, we performed six visual masking experiments. We show that this model, with only two free parameters, fits the empirical masking data with high precision. Finally, we provide equations of the power spectrum model for six masking noises used in the simulations and in the experiments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Consumers worldwide are increasingly concerned with sustainable production and consumption. Recently, a comprehensive study ranked 17 countries in regard to their environmentally friendly behaviour among consumers. Brazil was one of the top countries in the list. Yet, several studies highlight significant differences between consumers` intentions to consume ethically, and their actual purchase behaviour: the so-called `Attitude-Behaviour Gap`. In developing countries, few studies have been conducted on this issue. The objective of this study is therefore to investigate the gap between citizens` sustainability-related attitudes and food purchasing behaviour using empirical data from Brazil. To this end, Brazilian citizens` attitudes towards pig production systems were mapped through conjoint analysis and their coexistence with relevant pork product-related purchasing behaviour of consumers was investigated through cluster analysis. The conjoint experiment was carried Out with empirical data collected from 475 respondents surveyed in the South and Center-West regions of Brazil. The results of the conjoint analysis were used for a subsequent cluster analysis in order to identify clusters of Brazilian citizens with diversified attitudes towards pig production systems, using socio-demographics, attitudes towards sustainability-related themes that are expected to influence the way they evaluate pig production systems, and consumption frequency of various pork products as clusters` background information. Three clusters were identified as `indifferent`, `environmental conscious` and `sustainability-oriented` citizens. Although attitudes towards environment and nature had indeed an influence on citizens` specific attitudes towards pig farming at the cluster level, the relationship between `citizenship` and consumption behaviour was found to be weak. This finding is similar to previous research conducted with European consumers: what people (in their role of citizens) think about pig production systems does not appear to significantly influence their pork consumption choices. Improvements in the integrated management of this chain would better meet consumers` sustainability-related expectations towards pig production systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Complex industrial plants exhibit multiple interactions among smaller parts and with human operators. Failure in one part can propagate across subsystem boundaries causing a serious disaster. This paper analyzes the industrial accident data series in the perspective of dynamical systems. First, we process real world data and show that the statistics of the number of fatalities reveal features that are well described by power law (PL) distributions. For early years, the data reveal double PL behavior, while, for more recent time periods, a single PL fits better into the experimental data. Second, we analyze the entropy of the data series statistics over time. Third, we use the Kullback–Leibler divergence to compare the empirical data and multidimensional scaling (MDS) techniques for data analysis and visualization. Entropy-based analysis is adopted to assess complexity, having the advantage of yielding a single parameter to express relationships between the data. The classical and the generalized (fractional) entropy and Kullback–Leibler divergence are used. The generalized measures allow a clear identification of patterns embedded in the data.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents general problems and approaches for the spatial data analysis using machine learning algorithms. Machine learning is a very powerful approach to adaptive data analysis, modelling and visualisation. The key feature of the machine learning algorithms is that they learn from empirical data and can be used in cases when the modelled environmental phenomena are hidden, nonlinear, noisy and highly variable in space and in time. Most of the machines learning algorithms are universal and adaptive modelling tools developed to solve basic problems of learning from data: classification/pattern recognition, regression/mapping and probability density modelling. In the present report some of the widely used machine learning algorithms, namely artificial neural networks (ANN) of different architectures and Support Vector Machines (SVM), are adapted to the problems of the analysis and modelling of geo-spatial data. Machine learning algorithms have an important advantage over traditional models of spatial statistics when problems are considered in a high dimensional geo-feature spaces, when the dimension of space exceeds 5. Such features are usually generated, for example, from digital elevation models, remote sensing images, etc. An important extension of models concerns considering of real space constrains like geomorphology, networks, and other natural structures. Recent developments in semi-supervised learning can improve modelling of environmental phenomena taking into account on geo-manifolds. An important part of the study deals with the analysis of relevant variables and models' inputs. This problem is approached by using different feature selection/feature extraction nonlinear tools. To demonstrate the application of machine learning algorithms several interesting case studies are considered: digital soil mapping using SVM, automatic mapping of soil and water system pollution using ANN; natural hazards risk analysis (avalanches, landslides), assessments of renewable resources (wind fields) with SVM and ANN models, etc. The dimensionality of spaces considered varies from 2 to more than 30. Figures 1, 2, 3 demonstrate some results of the studies and their outputs. Finally, the results of environmental mapping are discussed and compared with traditional models of geostatistics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

For the last 2 decades, supertree reconstruction has been an active field of research and has seen the development of a large number of major algorithms. Because of the growing popularity of the supertree methods, it has become necessary to evaluate the performance of these algorithms to determine which are the best options (especially with regard to the supermatrix approach that is widely used). In this study, seven of the most commonly used supertree methods are investigated by using a large empirical data set (in terms of number of taxa and molecular markers) from the worldwide flowering plant family Sapindaceae. Supertree methods were evaluated using several criteria: similarity of the supertrees with the input trees, similarity between the supertrees and the total evidence tree, level of resolution of the supertree and computational time required by the algorithm. Additional analyses were also conducted on a reduced data set to test if the performance levels were affected by the heuristic searches rather than the algorithms themselves. Based on our results, two main groups of supertree methods were identified: on one hand, the matrix representation with parsimony (MRP), MinFlip, and MinCut methods performed well according to our criteria, whereas the average consensus, split fit, and most similar supertree methods showed a poorer performance or at least did not behave the same way as the total evidence tree. Results for the super distance matrix, that is, the most recent approach tested here, were promising with at least one derived method performing as well as MRP, MinFlip, and MinCut. The output of each method was only slightly improved when applied to the reduced data set, suggesting a correct behavior of the heuristic searches and a relatively low sensitivity of the algorithms to data set sizes and missing data. Results also showed that the MRP analyses could reach a high level of quality even when using a simple heuristic search strategy, with the exception of MRP with Purvis coding scheme and reversible parsimony. The future of supertrees lies in the implementation of a standardized heuristic search for all methods and the increase in computing power to handle large data sets. The latter would prove to be particularly useful for promising approaches such as the maximum quartet fit method that yet requires substantial computing power.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Automatic environmental monitoring networks enforced by wireless communication technologies provide large and ever increasing volumes of data nowadays. The use of this information in natural hazard research is an important issue. Particularly useful for risk assessment and decision making are the spatial maps of hazard-related parameters produced from point observations and available auxiliary information. The purpose of this article is to present and explore the appropriate tools to process large amounts of available data and produce predictions at fine spatial scales. These are the algorithms of machine learning, which are aimed at non-parametric robust modelling of non-linear dependencies from empirical data. The computational efficiency of the data-driven methods allows producing the prediction maps in real time which makes them superior to physical models for the operational use in risk assessment and mitigation. Particularly, this situation encounters in spatial prediction of climatic variables (topo-climatic mapping). In complex topographies of the mountainous regions, the meteorological processes are highly influenced by the relief. The article shows how these relations, possibly regionalized and non-linear, can be modelled from data using the information from digital elevation models. The particular illustration of the developed methodology concerns the mapping of temperatures (including the situations of Föhn and temperature inversion) given the measurements taken from the Swiss meteorological monitoring network. The range of the methods used in the study includes data-driven feature selection, support vector algorithms and artificial neural networks.