15 resultados para electrowetting
Resumo:
The possibility of effective control of the wetting properties of a nanostructured surface consisting of arrays of amorphous carbon nanoparticles capped on carbon nanotubes using the electrowetting technique is demonstrated. By analyzing the electrowetting curves with an equivalent circuit model of the solid/liquid interface, the long-standing problem of control and monitoring of the transition between the "slippy" Cassie state and the "sticky" Wenzel states is resolved. The unique structural properties of the custom-designed nanocomposites with precisely tailored surface energy without using any commonly utilized low-surface-energy (e.g., polymer) conformal coatings enable easy identification of the occurrence of such transition from the optical contrast on the nanostructured surfaces. This approach to precise control of the wetting mode transitions is generic and has an outstanding potential to enable the stable superhydrophobic capability of nanostructured surfaces for numerous applications, such as low-friction microfluidics and self-cleaning.
Resumo:
Electrowetting (EW) is an effective way to manipulate small volume liquid in micro- and nano-devices, for it can improve its wettability. Since the late 1990s, electrowetting-on-dielectric (EWOD) has been used widely in bio-MEMS, lab-on-a-chip, etc. Polydimethlsiloxane (PDMS) is extensively utilized as base materials in the fabrication of biomedical micro- and nano-devices. The properties of thin PDMS films used as dielectric layer in EW are studied in this paper. The experimental results show that the thin PDMS films exhibit good properties in EWOD. As to PDMS films with different thicknesses, a threshold voltage and a hysteresis were observed in the EIWOD experiments.
Resumo:
Electrowetting is one of the most effective methods to enhance wettability. A significant change of contact angle for the liquid droplet can result from the surface microstructures and the external electric field, without altering the chemical composition of the system. During the electrowetting process on a rough surface, the droplet exhibits a sharp transition from the Cassie-Baxter to the Wenzel regime at a low critical voltage. In this paper, a theoretical model for electrowetting is put forth to describe the dynamic electrical control of the wetting behavior at the low voltage, considering the surface topography. The theoretical results are found to be in good agreement with the existing experimental results. (c) Koninklijke Brill NV, Leiden, 2008.
Resumo:
Electrowetting on dielectrics has been widely used to manipulate and control microliter or nanoliter liquids in micro-total-analysis systems and laboratory on a chip. We carried out experiments on electrowetting on a lotus leaf, which is quite different from the equipotential plate used in conventional electrowetting. This has not been reported in the past. The lotus leaf is superhydrophobic and a weak conductor, so the droplet can be easily actuated on it through electrical potential gradient. The capillary motion of the droplet was recorded by a high-speed camera. The droplet moved toward the counterelectrode to fulfill the actuation. The actuation speed could be of the order of 10 mm/s. The actuation time is of the order of 10 ms.
Resumo:
Electrowetting on dielectrics has been widely used to manipulate and control microliter or nanoliter liquids in micro-total-analysis systems and laboratory on a chip. We carried out experiments on electrowetting on a lotus leaf which is quite different from the equipotential plate used in conventional electrowetting. This has not been reported in the past. The lotus leaf is superhydrophobic and a weak conductor so the droplet can be easily actuated on it through electrical potential gradient. The capillary motion of the droplet was recorded by a high-speed camera. The droplet moved toward the counterelectrode to fulfill the actuation. The actuation speed could be of the order of 10 mm/s. The actuation time is of the order of 10 ms.
Resumo:
Dynamic wetting and electrowetting are explored using molecular dynamics simulations. The propagation of the precursor film (PF) is fast and obeys the power law with respect to time. Against the former studies, we find the PF is no slip and solidlike. As an important application of the PF, the electro-elasto-capillarity, which is a good candidate for drug delivery at the micro- or nanoscale, is simulated and realized for the first time. Our findings may be one of the answers to the Huh-Scriven paradox and expand our knowledge of dynamic wetting and electrowetting.
Resumo:
In an effort to develop a novel electronic paper image display technology based on the electrowetting principle, a 3-D electrowetting cell is designed and fabricated, which consists of two 3-D bent electrodes, each having a horizontal surface made of gold and a vertical surface made of indium tin oxide (ITO) glass as a color display window, a layer of dielectric material on the 3-D electrodes, and a highly fluorinated hydrophobic layer on the surface of the dielectric layer. Results of this work show that an electrowetting-induced motion of an aqueous droplet in immiscible oils can be achieved reversibly across the boundary of the horizontal and vertical surfaces of the 3-D electrode surface. It is also shown that the droplet can maintain its wetting state on a vertical sidewall electrode free of a power supplier when the voltage is removed. This phenomenon may form the basis for color contrast modulation applications, where a power-free image display is required, such as electronic paper display technology in the future. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3100201]
Resumo:
Nowadays the medical field is struggling to decrease bacteria biofilm formation which leads to infection. Biomedical devices sterilization has not changed over a long period of time. This results in high costs for hospitals healthcare managements. The objective of this project is to investigate electric field effects and surface energy manipulation as solutions for preventing bacteria biofilm for future devices. Based on electrokinectic environments 2 different methods were tested: feasibility of electric gradient through mediums (DEP) reinforced by numerical simulations; and EWOD by the fabrication of golden interdigitated electrodes on silicon glass substrates, standard ~480 nm Teflon (PTFE) layer and polymeric gasket to contain the bacteria medium. In the first experiment quantitative analysis was carried out to achieve forces required to reject bacteria without considering dielectric environment limitations as bacteria and medium frequency dependence. In the second experiment applied voltages was characterized by droplets contact angle measurements and put to the live bacteria tests. The project resulted on promising results for DEP application due to its wide range of frequency that can be used to make a “general” bacteria rejecting; but in terms of practicality, EWOD probably have higher potential for success but more experiments are needed to verify if can prevent biofilm adhesion besides the Teflon non-adhesive properties (including limitations as Teflon breakthrough, layer sensitivity) at incubation times larger than 24 hours.
Resumo:
Small-scale pumps will be the heartbeat of many future micro/nanoscale platforms. However, the integration of small-scale pumps is presently hampered by limited flow rate with respect to the input power, and their rather complicated fabrication processes. These issues arise as many conventional pumping effects require intricate moving elements. Here, we demonstrate a system that we call the liquid metal enabled pump, for driving a range of liquids without mechanical moving parts, upon the application of modest electric field. This pump incorporates a droplet of liquid metal, which induces liquid flow at high flow rates, yet with exceptionally low power consumption by electrowetting/deelectrowetting at the metal surface. We present theory explaining this pumping mechanism and show that the operation is fundamentally different from other existing pumps. The presented liquid metal enabled pump is both efficient and simple, and thus has the potential to fundamentally advance the field of microfluidics.
Resumo:
Poly(dimethylsiloxane) (PDMS) has been widely used in lab-on-a-chip and micro- total analysis systems (mu-TAS), thus wetting and electrowetting behaviors of PDMS are of great importance in these devices. PDMS is a kind of soft polymer material, so the elastic deformation of PDMS membrane by a droplet cannot be neglected due to the vertical component of the interfacial tension between the liquid and vapor, and this vertical component of liquid-vapor surface tension is also balanced by the stress distribution within the PDMS membrane. Such elastic deformation and stress distribution not only affect the exact measurement of contact angle, but also have influence on the micro-fluidic behavior of the devices. Using ANSYS code, we simulated numerically the elastic deformation and stress distribution of PDMS membrane on a rigid substrate due to the liquid-vapor surface tension. It is found that the vertical elastic deformation of the PDMS membrane is on the order of several tens of nanometers due to the application of a droplet with a diameter of 2.31 mm, which is no longer negligible for lab-on-a-chip and mu-TAS. The vertical elastic deformation increases with the thickness of the PDMS membrane, and there exists a saturated membrane thickness, regarded as a semi-infinite membrane thickness, and the vertical elastic deformation reaches a limiting value when the membrane thickness is equal to or thicker than such saturated thickness. (C) Koninklijke Brill NV, Leiden, 2008.
Resumo:
Polydimethylsiloxane ( PDMS) has become the most widely used silicon-based organic polymer in bio-MEMS/NEMS devices. However, the inherent hydrophobic nature of PDMS hinders its wide applications in bio-MEMS/NEMS for efficient transport of liquids. Electrowetting is a useful tool to reduce the apparent contact angle of partially wetting conductive liquids and has been utilized widely in bio-MEMS/NEMS. Our experimental results show that the thin PDMS membranes exhibit good properties in electrowetting-on-dielectric. The electrical instability phenomenon of droplets was observed in our experiment. The sessile droplet lying on the PDMS membrane will lose its stability with the touch of the wire electrode to make the apparent contact angle change suddenly larger than 35 degrees. Contact mode can protect the dielectric layer from electrical breakdown effectively. Electrical breakdown process of dielectric layer was recorded by a high speed camera. It is found experimentally that a PDMS membrane of 4.8 mu m thick will not be destroyed due to the electric breakdown even at 800 V in the contact mode.
Resumo:
液滴是自然界中普遍存在的一种物质形态。非连续微流体(液滴)是近年来微流体技术重要发展方向之一。对液滴的产生、启动、移动、合并、分离和碰撞过程的研究对于航天、微纳系统、电子显示、计算机冷却、喷墨、生物医学等学科领域有着重要的应用价值。液滴属于软物质,其力学性质介于流体和固体之间,其类固体(solid-like)行为来自于曲率产生的Laplace压力和表面张力的约束。对液滴动力学行为的研究有着重要的学术价值。 本文的主要工作是针对生物微电子机械系统(Bio-MEMS)以及柔性微纳电子加工中常用的材料聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)为基底的液滴动力学实验研究。 液滴是一个理想的微反应器,许多实验可以集成在一个液滴或多个液滴内完成。液滴本身的动力学特性对于实验的完成效率和质量有着重要的影响。液滴的微操控技术包括多相流法、电润湿法、热毛细管法、介电泳法等。液滴的动力学特性受到基底的影响非常大,包括基频、振动模态、运动过程等均随基底的润湿性、弹性模量的变化而有所变化。 在Bio-MEMS以及柔性微纳电子加工当中,PDMS扮演着越来越重要的角色,尤其是PDMS的润湿性和电润湿特性。目前的PDMS在Bio-MEMS当中主要是用于制备各种微流道。常见的问题主要是一方面PDMS是疏水材料,影响流体的输运。另一方面是液体在这种低Reynolds数情况下不易混合,反应效率低。本文提出了在PDMS表面溅射纳米厚度的金来减小PDMS表观接触角的方法。这种方式在特定喷金量的情况下可以在PDMS表面产生多层次的压应力波纹。这种压应力波纹对于柔性微纳电子加工,以及微流道中加速流体混合有着非常重要的作用。 电润湿是另一种可以使PDMS亲水化的方法。实验证明,PDMS具有较好的电润湿性质。此外电润湿也是目前操纵液滴的主要方式。目前一个常见的问题是电击穿现象阻碍了驱动电压的低压化,且低Reynolds数情况下液滴的混合效率偏低。此外电极还会由于少量电解的发生导致腐蚀及对液体样品的污染。本文提出了接触式的电润湿,在电极逐渐触碰液滴的过程中,液滴发生百Hz的失稳振动,稳定后接触角减小。这种电润湿模式可以有效的提高临界击穿电压,避免液滴被腐蚀后的电极污染,同时可以加快液滴的混合效率。其失稳特征时间在10 ms量级,这恰是所用液滴特征尺度在1 mm左右的电润湿器件的最快响应时间。并采用液滴振动的理论估算了液滴的失稳时间,同时还考虑了基底润湿性对液滴振动过程的影响。 液滴的启动是电润湿操控液滴过程中的重要环节。通常的液滴启动都是在非连续基底上依靠逻辑电路产生的电势变化来驱动液滴。无论是逻辑电路的设计还是驱动装置的加工都非常复杂。本文首次实现了在超疏水生物样品荷叶上的液滴启动,启动速度为数十毫米/秒,启动时间为10 ms量级。并利用PDMS成功的仿制了荷叶结构实现了超疏水的PDMS表面,荷叶同仿荷叶的PDMS超疏水表面具有相近的润湿性。 在数字微流体操控液滴的过程中,液滴的合并涉及液滴的碰撞,而且MEMS系统当中利用液滴撞击进行冷却的实验已经有所开展。同时理解液滴碰撞还对许多领域包括生物、化学、喷墨、大气物理等有着非常重要的作用。本文实验研究了Weber数和毛细数对液滴碰撞过程的影响,通过改变Weber数和毛细数得到了四种不同的响应模式。
Resumo:
The overall objective of this thesis is to integrate a number of micro/nanotechnologies into integrated cartridge type systems to implement such biochemical protocols. Instrumentation and systems were developed to interface such cartridge systems: (i) implementing microfluidic handling, (ii) executing thermal control during biochemical protocols and (iii) detection of biomolecules associated with inherited or infectious disease. This system implements biochemical protocols for DNA extraction, amplification and detection. A digital microfluidic chip (ElectroWetting on Dielectric) manipulated droplets of sample and reagent implementing sample preparation protocols. The cartridge system also integrated a planar magnetic microcoil device to generate local magnetic field gradients, manipulating magnetic beads. For hybridisation detection a fluorescence microarray, screening for mutations associated with CFTR gene is printed on a waveguide surface and integrated within the cartridge. A second cartridge system was developed to implement amplification and detection screening for DNA associated with disease-causing pathogens e.g. Escherichia coli. This system incorporates (i) elastomeric pinch valves isolating liquids during biochemical protocols and (ii) a silver nanoparticle microarray for fluorescent signal enhancement, using localized surface plasmon resonance. The microfluidic structures facilitated the sample and reagent to be loaded and moved between chambers with external heaters implementing thermal steps for nucleic acid amplification and detection. In a technique allowing probe DNA to be immobilised within a microfluidic system using (3D) hydrogel structures a prepolymer solution containing probe DNA was formulated and introduced into the microfluidic channel. Photo-polymerisation was undertaken forming 3D hydrogel structures attached to the microfluidic channel surface. The prepolymer material, poly-ethyleneglycol (PEG), was used to form hydrogel structures containing probe DNA. This hydrogel formulation process was fast compared to conventional biomolecule immobilization techniques and was also biocompatible with the immobilised biomolecules, as verified by on-chip hybridisation assays. This process allowed control over hydrogel height growth at the micron scale.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This thesis demonstrates a new way to achieve sparse biological sample detection, which uses magnetic bead manipulation on a digital microfluidic device. Sparse sample detection was made possible through two steps: sparse sample capture and fluorescent signal detection. For the first step, the immunological reaction between antibody and antigen enables the binding between target cells and antibody-‐‑ coated magnetic beads, hence achieving sample capture. For the second step, fluorescent detection is achieved via fluorescent signal measurement and magnetic bead manipulation. In those two steps, a total of three functions need to work together, namely magnetic beads manipulation, fluorescent signal measurement and immunological binding. The first function is magnetic bead manipulation, and it uses the structure of current-‐‑carrying wires embedded in the actuation electrode of an electrowetting-‐‑on-‐‑dielectric (EWD) device. The current wire structure serves as a microelectromagnet, which is capable of segregating and separating magnetic beads. The device can achieve high segregation efficiency when the wire spacing is 50µμm, and it is also capable of separating two kinds of magnetic beads within a 65µμm distance. The device ensures that the magnetic bead manipulation and the EWD function can be operated simultaneously without introducing additional steps in the fabrication process. Half circle shaped current wires were designed in later devices to concentrate magnetic beads in order to increase the SNR of sample detection. The second function is immunological binding. Immunological reaction kits were selected in order to ensure the compatibility of target cells, magnetic bead function and EWD function. The magnetic bead choice ensures the binding efficiency and survivability of target cells. The magnetic bead selection and binding mechanism used in this work can be applied to a wide variety of samples with a simple switch of the type of antibody. The last function is fluorescent measurement. Fluorescent measurement of sparse samples is made possible of using fluorescent stains and a method to increase SNR. The improved SNR is achieved by target cell concentration and reduced sensing area. Theoretical limitations of the entire sparse sample detection system is as low as 1 Colony Forming Unit/mL (CFU/mL).