67 resultados para electroretinogram
Resumo:
Purpose: To investigate early functional changes of local retinal defects in type II diabetic patients using the global flash multifocal electroretinogram (MOFO mfERG). Methods: Thirty-eight diabetic patients and 14 age-matched controls were recruited. Nine of the diabetics were free from diabetic retinopathy (DR), while the remainder had mild to moderate non-proliferative diabetic retinopathy. The MOFO mfERG was performed at high (98%) and low (46%) contrast levels. MfERG responses were grouped into 35 regions for comparison with DR classification at those locations. Z-scores of the regional mfERG responses were compared across different types of DR defects. Results: The mfERG waveform consisted of the direct component (DC) and the induced component (IC). Local reduction in DC and IC amplitudes were found in diabetic patients with and without DR. With increasing severity of retinopathy, there was a further deterioration in amplitude of both components. Under MOFO mfERG paradigm, amplitude was a useful screening parameter. Conclusion: The MOFO mfERG can help in detecting early functional anomalies before the appearance of visible signs, and may assist in monitoring further functional deterioration in diabetic patients.
Resumo:
Purpose: To investigate the correlations of the global flash multifocal electroretinogram (MOFO mfERG) with common clinical visual assessments – Humphrey perimetry and Stratus circumpapillary retinal nerve fiber layer (RNFL) thickness measurement in type II diabetic patients. Methods: Forty-two diabetic patients participated in the study: ten were free from diabetic retinopathy (DR) while the remainder suffered from mild to moderate non-proliferative diabetic retinopathy (NPDR). Fourteen age-matched controls were recruited for comparison. MOFO mfERG measurements were made under high and low contrast conditions. Humphrey central 30-2 perimetry and Stratus OCT circumpapillary RNFL thickness measurements were also performed. Correlations between local values of implicit time and amplitude of the mfERG components (direct component (DC) and induced component (IC)), and perimetric sensitivity and RNFL thickness were evaluated by mapping the localized responses for the three subject groups. Results: MOFO mfERG was superior to perimetry and RNFL assessments in showing differences between the diabetic groups (with and without DR) and the controls. All the MOFO mfERG amplitudes (except IC amplitude at high contrast) correlated better with perimetry findings (Pearson’s r ranged from 0.23 to 0.36, p<0.01) than did the mfERG implicit time at both high and low contrasts across all subject groups. No consistent correlation was found between the mfERG and RNFL assessments for any group or contrast conditions. The responses of the local MOFO mfERG correlated with local perimetric sensitivity but not with RNFL thickness. Conclusion: Early functional changes in the diabetic retina seem to occur before morphological changes in the RNFL.
Resumo:
Purpose To determine neuroretinal function with multifocal electroretinogram (mfERG) in diabetic subjects without retinopathy. Methods Multifocal electroretinogram (mfERG) was performed in 18 eyes of 18 diabetic subjects without retinopathy and 17 eyes of 17 age and gender-matched healthy control participants. Among 18 diabetic subjects, two had type 1 and 16 had type 2 diabetes. MfERG responses were averaged by the retinal areas of six concentric rings and four quadrants, and 103 retinal locations; N1–P1 amplitude and P1-implicit time were analysed. Results Average mfERG N1–P1 amplitude (in nv/deg2) of 103 retinal locations was 56.3 ± 17.2 (mean ± SD) in type 1 diabetic subjects, 47.2 ± 9.3 in type 2 diabetic subjects and 71.5 ± 12.7 in controls. Average P1-implicit time (in ms) was 43.0 ± 1.3 in type 1 diabetic subjects, 43.9 ± 2.3 in type 2 diabetic subjects and 41.9 ± 2.1 in controls. There was significant reduction in average N1–P1 amplitude and delay in P1-implicit time in type 2 diabetic subjects in comparison to controls. mfERG amplitude did not show any significant correlation with diabetes duration and blood sugar level. However, implicit time showed a positive correlation with diabetes duration in type 2 diabetic subjects with diabetes duration ≥5 years. Conclusions This is the first study in a Nepalese population with diabetes using multifocal electroretinography. We present novel findings that mfERG N1–P1 amplitude is markedly reduced along with delay in P1-implicit time in type 2 diabetic subjects without retinopathy. These findings indicate that there might be significant dysfunction of inner retina before the development of diabetic retinopathy in the study population, which have higher prevalence of diabetes than the global estimate and uncontrolled blood sugar level.
Resumo:
Purpose. Processing of information through the cellular layers of the retina occurs in a serial manner. In the electroretinogram (ERG), this complicates interpretation of inner retinal changes as dysfunction may arise from "upstream" neurons or may indicate a direct loss to that neural generator. We propose an approach that addresses this issue by defining ERG gain relationships.
Methods. Regression analyses between two serial ERG parameters in a control cohort of rats are used to define gain relationships. These gains are then applied to two models of retinal disease.
Results. The PIIIamp to PIIamp gain is unity whereas the PIIamp to pSTRamp and PIIamp to nSTRamp gains are greater than unity, indicating "amplification" (P <0.05). Timing relationships show amplification between PIIIit to PIIit and compression for PIIit to pSTRit and PIIit to nSTRit, (P <0.05). Application of these gains to ?-3-deficiency indicates that all timing changes are downstream of photoreceptor changes, but a direct pSTR amplitude loss occurs (P <0.05). Application to diabetes indicates widespread inner retinal dysfunction which cannot be attributed to outer retinal changes (P <0.05).
Conclusions. This simple approach aids in the interpretation of inner retinal ERG changes by taking into account gain characteristics found between successive ERG components of normal animals.
Resumo:
Intraocular pressure (IOP) elevation is a key risk factor for glaucoma. Our understanding of the effect that IOP elevation has on the eye has been greatly enhanced by the application of the electroretinogram (ERG). In this paper, we describe how the ERG in the rodent eye is affected by changes in IOP magnitude, duration, and number of spikes. We consider how the variables of blood pressure and age can modify the effect of IOP elevation on the ERG. Finally, we contrast the effects that acute and chronic IOP elevation can have on the rodent ERG.
Resumo:
We investigated the color vision pattern in Cebus apella monkeys by means of electroretinogram measurements (ERG) and genetic analysis. Based on ERG we could discriminate among three types of dichromatic males. Among females, this classification is more complex and requires additional genetic analysis. We found five among 10 possible different phenotypes, two trichromats and three dichromats. We also found that Cebus present a new allele with spectral peak near 552 nm, with the amino acid combination SFT at positions 180, 277 and 285 of the opsin gene, in addition to the previously described SYT, AFT and AFA alleles. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The retinas of macaque monkeys usually contain three types of photopigment, providing them with trichromatic color vision homologous to that of humans. However, we recently used molecular genetic analysis to identify several macaques with a dichromatic genotype. The affected X chromosome of these animals contains a hybrid gene of long-wavelength-sensitive (L) and middle-wavelength-sensitive (M) photopigments instead of separate genes encoding L and M photopigments. The product of the hybrid gene exhibits a spectral sensitivity close to that of M photopigment; consequently, male monkeys carrying the hybrid gene are genetic protanopes, effectively lacking L photopigment. In the present study, we assessed retinal expression of L photopigment in monkeys carrying the hybrid gene. The relative sensitivities to middle-wavelength (green) and long-wavelength (red) light were measured by electroretinogram flicker photometry. We found the sensitivity to red light to be extremely low in protanopic male monkeys compared with monkeys with the normal genotype. In female heterozygotes, sensitivity to red light was intermediate between the genetic protanopes and normal monkeys. Decreased sensitivity to long wavelengths was thus consistent with genetic loss of L photopigment.
Resumo:
With an ageing population, the number of age-related macular disease (ARMD) cases will inevitably rise. This gives greater impetus for the need to identify the disease earlier and assess treatments to slow disease progression. Differing electroretinogram (ERG) modalities have been reviewed in relation to the objective assessment of retinal function in ARMD and for monitoring the effectiveness of clinical interventions. Conflicting results have been found with regard to the efficacy of ERG findings in the investigation of ARMD in previous years. The newer multifocal ERG paradigm provides spatial topographical information about retinal function in ARMD. It has shown promising results in monitoring effectiveness of clinical interventions and studies are continuing in this area. Better knowledge of retinal function in ARMD may lead to enhanced treatments at each phase of the disease.
Resumo:
The locus of origin of the pattern evoked electroretinogram, (PERG), has been the subject of considerable discussion. A novel approach was adopted in this study to further elaborate the nature of the PERG evoked by pattern onset/offset presentation. The PERG was found to be linearly related to stimulus contrast and in particular was linearly related to the temporal contrast of the retinal image, when elicited by patterns of low spatial frequency. At high spatial frequencies the retinal image contrast is significantly reduced because of optical degradation. This is described by the eye's modulation transfer function (MTF). The retinal contrast of square wave grating and chequerboard patterns of increasing spatial frequency were found by filtering their Fourier transforms by the MTF. The filtered pattern harmonics were then resynthesised to constitute a profile of retinal image illuminance from which the temporal and spatial contrast of the image could be calculated. If the PERG is a pure illuminance response it should be spatially insensitive and dependent upon the temporal contrast of stimulation. The calculated loss of temporal contrast for finer patterns was expressed as a space-averaged temporal contrast attentuation factor. This factor, applied to PERGs evoked by low spatial frequency patterns, was used to predict the retinal illuminance response elicited by a finer pattern. The predicted response was subtracted from the recorded signal and residual waveform was proposed to represent specific activity. An additional correction for the attenuation of spatial contrast was applied to the extracted pattern specific response. Pattern specific responses computed for different spatial frequency patterns in this way are the predicted result of iso-contrast pattern stimulation. The pattern specific responses demonstrate a striking bandpass spatial selectivity which peaks at higher spatial frequencies in the more central retina. The variation of spatial sensitivity with eccentricity corresponds closely with estimated ganglion receptive field centre separation and psychophysical data. The variation of retinal structure with eccentricity, in the form of the volumes of the nuclear layers, was compared with the amplitudes of the computed retinal illuminance and pattern specific responses. The retinal illuminance response corresponds more closely to the outer and inner nuclear layers whilst the pattern specific response appears more closely related to the ganglion cell layer. In general the negative response transients correspond to the more proximal retinal layers. This thesis therefore supports the proposed contribution of proximal retinal cell activity to the PERG and describes techniques which may be further elaborated for more detailed studies of retinal receptive field dimensions.
Studies on the luminance-related characteristics of the transient pattern reversal electroretinogram
Resumo:
The electroretinogram evoked by reversal pattern stimulation (rPERG) is known to contain both pattern contrast and luminance related components. The retinal mechanisms of the transient rPERGs subserving these functional characteristics are the main concern in the present studies. Considerable attention has been paid to the luminance-related characteristics of the response. The transient PERGs were found to consist of two subsequent processes using low frequency attenuation analysis. The processes overlapped and the individual difference in each process timings formed the major cause for the variations of the negative potential waveform of the transient rPERGs. Attention has been paid to those having ‘notch’ type of variation. Under different contrast levels, the amplitudes of the positive and negative potentials were linearly increased with higher contrast level and the negative potential showed a higher sensitivity to contrast changes and higher contrast gain. Under lower contrast levels, the decreased amplitudes made the difference in the timing course of the positive and negative processes evident, interpreting the appearance of the notch in some cases. Visual adaptation conditions for recording the transient rPERG were discussed. Another effort was to study the large variation of the transient rPERGs (especially the positive potential, P50) in the elderly who’s distant and near visual acuity were normal. It was found that reduction of retinal illumination contributed mostly to the P50 amplitude loss and contrast loss mostly to the negative potential (N95) amplitude loss. Senile miosis was thought to have little effect on the reduction of the retinal illumination, while the changes in the optics of the eye was probably the major cause for it, which interpreted the larger individual variation of the P50 amplitude of the elderly PERGs. Convex defocus affected the transient rPERGs more effectively than concave lenses, especially the N95 amplitude in the elderly. The disability of accommodation and the type and the degree of subjects’ ametropia should be taken into consideration when the elderly rPERGs were analysed.
Resumo:
BACKGROUND: Previous studies have demonstrated an increase in macular pigment optical density (MPOD) with lutein (L)-based supplementation in healthy eyes. However, not all studies have assessed whether this increase in MPOD is associated with changes to other measures of retinal function such as the multifocal ERG (mfERG). Some studies also fail to report dietary levels of L and zeaxanthin (Z). Because of the associations between increased levels of L and Z, and reduced risk of AMD, this study was designed to assess the effects of L-based supplementation on mfERG amplitudes and latencies in healthy eyes. METHODS: Multifocal ERG amplitudes, visual acuity, contrast sensitivity, MPOD and dietary levels of L and Z were assessed in this longitudinal, randomized clinical trial. Fifty-two healthy eyes from 52 participants were randomly allocated to receive a L-based supplement (treated group), or no supplement (non-treated group). RESULTS: There were 25 subjects aged 18-77 (mean age ± SD; 48 ± 17) in the treated group and 27 subjects aged 21-69 (mean age ± SD; 43 ± 16) in the non-treated group. All participants attended for three visits: visit one at baseline, visit two at 20 weeks and visit three at 40 weeks. A statistically significant increase in MPOD (F = 17.0, p ≤ 0.001) and shortening of mfERG ring 2 P1 latency (F = 3.69, p = 0.04) was seen in the treated group. CONCLUSIONS: Although the results were not clinically significant, the reported trend for improvement in MPOD and mfERG outcomes warrants further investigation.