990 resultados para electromagnetically induced absorption


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that it is possible to change from a subnatural electromagnetically induced transparency (EIT) feature to a subnatural electromagnetically induced absorption (EIA) feature in a (degenerate) three-level. system. The change is effected by turning on a second control beam counter-propagating with respect to the first beam. We observe this change in the D-2 line of Rb in a room temperature vapor cell. The observations are supported by density-matrix analysis of the complete sublevel structure including the effect of Doppler averaging, but can be understood qualitatively as arising due to the formation of N-type systems with the two control beams. Since many of the applications of EIT and EIA rely on the anomalous dispersion near the resonances, this introduces a new ability to control the sign of the dispersion. Copyright (C) EPLA, 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the phenomenon of electromagnetically induced transparency and absorption (EITA) using a control laser with a Laguerre-Gaussian (LG) profile instead of the usual Gaussian profile, and observe significant narrowing of the resonance widths. Aligning the probe beam to the central hole in the doughnut-shaped LG control beam allows simultaneously a strong control intensity required for high signal-to-noise ratio and a low intensity in the probe region required to get narrow resonances. Experiments with an expanded Gaussian control and a second-order LG control show that transit time and orbital angular momentum do not play a significant role. This explanation is borne out by a density-matrix analysis with a radially varying control Rabi frequency. We observe these resonances using degenerate two-level transitions in the D-2 line of Rb-87 in a room temperature vapor cell, and an EIA resonance with width up to 20 times below the natural linewidth for the F = 2 -> F' = 3 transition. Thus the use of LG beams should prove advantageous in all applications of EITA and other kinds of pump-probe spectroscopy as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze theoretically the phenomenon of electromagnetically induced transparency (UT) under conditions where the probe laser is not in the usual weak limit. We consider the effects in both three-level and four-level systems, which are either closed or open (due to losses to an external metastable level). We find that the EIT dip almost disappears in a closed three-level system but survives in an open system. In four-level systems, there is a narrow enhanced-absorption peak (EITA) at line center, which has applications as an optical clock. The peak converts to an EIT dip in a closed system, but again survives in an open system. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the effects of spontaneously induced coherence on absorption properties in a nearly equispaced three-level ladder-type system driven by two coherent fields. It find that the absorption properties of this system with the probe field applied on the lower transition can be significantly modified if this coherence is optimized. In the case of small spontaneous decay rate in the upper excited state, it finds that such coherence does not destroy the electromagnetically induced transparency (EIT). Nevertheless, the absorption peak on both sides of zero detuning and the linewidth of absorption line become larger and narrower than those in the case corresponding to the effects of spontaneously induced coherence; while in the case of large decay rate, it finds that, instead of EIT with low resonant absorption, a sharp absorption peak at resonance appears. That is, electromagnetically induced absorption in the nearly equispaced ladder-type system can occur due to such coherent effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate a four-level double-Lambda atomic scheme interacting with four laser fields, a weak probe field, a weak signal field and two driven fields, in a closed-loop configuration. We study the Kerr nonlinearity associated with cross-phase modulation based on electromagnetically induced transparency. Our results show, in this closed-loop system, that the strength of cross-phase modulation and two-photon absorption are dependent critically on the relative phase between the excitation paths. By choosing the parameters appropriately, large cross-phase modulation can be achieved within a wide transparency window, while two-photon absorption is cancelled completely. The strength of cross-phase modulation can be enhanced much more by decreasing the intensities of two driven fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a scheme for realizing negative refractive index in a V-type four-level atomic system. It is shown that the negative refractive index can be achieved in a wide frequency band based on the effect of quantum coherence. It is also found that the frequency band of negative refractive index and the absorption property of left-handed material are manipulated by the pump and control fields. Furthermore, left-handed material with reduced absorption is possible by choosing appropriate parameters. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electromagnetically induced transparency (EIT) is an important tool for controlling light propagation and nonlinear wave mixing in atomic gases with potential applications ranging from quantum computing to table top tests of general relativity. Here we consider EIT in an atomic Bose-Einstein condensate (BEC) trapped in a double-well potential. A weak probe laser propagates through one of the wells and interacts with atoms in a three-level Lambda configuration. The well through which the probe propagates is dressed by a strong control laser with Rabi frequency Omega(mu), as in standard EIT systems. Tunneling between the wells at the frequency g provides a coherent coupling between identical electronic states in the two wells, which leads to the formation of interwell dressed states. The macroscopic interwell coherence of the BEC wave function results in the formation of two ultranarrow absorption resonances for the probe field that are inside of the ordinary EIT transparency window. We show that these new resonances can be interpreted in terms of the interwell dressed states and the formation of a type of dark state involving the control laser and the interwell tunneling. To either side of these ultranarrow resonances there is normal dispersion with very large slope controlled by g. We discuss prospects for observing these ultranarrow resonances and the corresponding regions of high dispersion experimentally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electromagnetically induced transparency (EIT) experiments in Lambda-type systems benefit from the use of hot vapor where the thermal averaging results in reducing the width of the EIT resonance well below the natural linewidth. Here, we demonstrate a technique for further reducing the EIT width in room-temperature vapor by the application of a small longitudinal magnetic field. The Zeeman shift of the energy levels results in the formation of several shifted subsystems; the net effect is to create multiple EIT dips each of which is significantly narrower than the original resonance. We observe a reduction by a factor of 3 in the D2 line of 87Rb with a field of 3.2 G.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coupled electromagnetically induced transparency (EIT) has been observed with a dual mode control laser. The technique can be used for generating EIT-comb from optical frequency comb.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a A-type system employing a two-photon pump field, a four-wave mixing field can be generated simultaneously and, hence, a closed-loop system forms. We study theoretically the effect of the relative phase between the two incident fields on the generated four-wave mixing field and the electromagnetically induced transparency. It is found that the phase of the generated four-wave mixing field is the sum of the incident relative phase and a fixed phase that is irrelative to the incident relative phase. Hence, the total phase of the closed-loop system is independent of the incident relative phase. As a result, the incident relative phase has no effect on the electromagnetically induced transparency, which is different from the case of a A-type loop system closed by a third incident field. (c) 2005 Pleiades Publishing, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate an enhancement of the Kerr nonlinearity in phase-dependent double electromagnetically induced transparency (EIT) media. We find, by changing the relative phase of the driven fields, that the properties of EIT and the Kerr nonlinearity can be modified significantly. Choosing the relative phase appropriately, a giant Kerr nonlinearity can be achieved with vanishing absorptions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonlinear behavior of a probe pulse propagating in a medium with electromagnetically induced transparency is studied both numerically and analytically. A new type of nonlinear wave equation is proposed in which the noninstantaneous response of nonlinear polarization is treated properly. The resulting nonlinear behavior of the propagating probe pulse is shown to be fundamentally different from that predicted by the simple nonlinear Schrodinger-like wave equation that considers only instantaneous Kerr nonlinearity. (c) 2005 Optical Society of America.