993 resultados para dissolved uranium
Resumo:
Natural, dissolved 238U-series radionuclides (U, 226Ra, 222Rn) and activity ratios (A.R.s: 234U/238U; 228Ra/226Ra) in Continental Intercalaire (CI) groundwaters and limited samples from the overlying Complexe Terminal (CT) aquifers of Algeria and Tunisia are discussed alongside core measurements for U/Th (and K) in the contexts of radiological water quality, geochemical controls in the aquifer, and water residence times. A redox barrier is characterised downgradient in the Algerian CI for which a trend of increasing 234U/238U A.R.s with decreasing U-contents due to recoil-dominated 234U solution under reducing conditions allows residence time modelling ∼500 ka for the highest enhanced A.R. = 3.17. Geochemical modelling therefore identifies waters towards the centre of the Grand Erg Oriental basin as palaeowaters in line with reported 14C and 36Cl ages. A similar 234U/238U trend is evidenced in a few of the Tunisian CI waters. The paleoage status of these waters is affirmed by both noble gas recharge temperatures and simple modelling of dissolved, radiogenic 4He-contents both for sampled Algerian and Tunisian CI and CT waters. For the regions studied these waters therefore should be regarded as “fossil” waters and treated effectively as a non-renewable resource.
Resumo:
Groundwater samples were collected for several months in boreholes drilled at Morro do Ferro, a thorium and rare earth deposit located on the Poços de Caldas Plateau, Minas Gerais State, Brazil. An aquifer system has developed in the weathered mantle due to in situ intense alteration. The weathered zone includes a thick argillaceous laterite greater than 100 m thick. The U content and 324U/238U activity ratio were measured in the groundwater samples and in spoil samples of a borehole drilled in the ore body. Some possible mechanisms related to the mobilization of uranium are considered such as complexation with humic substances and adsorption by clays. © 1989.
Resumo:
Natural, dissolved U-238-series radionuclides (U, Ra-226, Rn-222) and activity ratios (A.R.s: U-234/U-238; Ra-228/Ra-226) in Continental Intercalaire (Cl) groundwaters and limited samples from the overlying Complexe Terminal (CT) aquifers of Algeria and Tunisia are discussed alongside core measurements for U/Th (and K) in the contexts of radiological water quality, geochemical controls in the aquifer, and water residence times. A redox barrier is characterised downgradient in the Algerian Cl for which a trend of increasing U-234/U-238 A.R.s with decreasing U-contents due to recoil-dominated U-234 solution under reducing conditions allows residence time modelling similar to 500 ka for the highest enhanced A.R. = 3.17. Geochemical modelling therefore identifies waters towards the centre of the Grand Erg Oriental basin as palaeowaters in line with reported C-14 and Cl-36 ages. A similar U-234/U-238 trend is evidenced in a few of the Tunisian CI waters. The paleoage status of these waters is affirmed by both noble gas recharge temperatures and simple modelling of dissolved, radiogenic He-4-contents both for sampled Algerian and Tunisian CI and CT waters. For the regions studied these waters therefore should be regarded as "fossil" waters and treated effectively as a non-renewable resource. (C) 2014 The Authors. Published by Elsevier Ltd.
Resumo:
The Yellow River (Huanghe) is the second largest river in China and is known for its high turbidity. It also has remarkably high levels of dissolved uranium (U) concentrations (up to 38 nmol l(-1)). To examine the mixing behavior of dissolved U between river water and seawater, surface water samples were collected along a salinity gradient from the Yellow River plume during September 2004 and were measured for dissolved U concentration, U-234:U-238 activity ratio, phosphate (PO43-), and suspended particulate matter. Laboratory experiments were also conducted to simulate the mixing process in the Yellow River plume using unfiltered Yellow River water and filtered seawater. The results showed a nonconservative behavior for dissolved U at salinities < 20 with an addition of U to the plume waters estimated at about 1.4 X 10(5) mol yr(-1). A similarity between variations in dissolved U and PO43- with salinity was also found. There are two major mechanisms, desorption from suspended sediments and diffusion from interstitial waters of bottom sediments, that may cause the elevated concentrations of dissolved U and PO43- in mid-salinity waters. Mixing experiments indicate that desorption seems more responsible for the elevated dissolved U concentrations, whereas diffusion influences more the enrichment of PO43-.
Resumo:
The U-disequilibrium method was utilized to evaluate the velocity of alteration of rocks and fertilizer-derived uranium in the Corumbatai River basin, São Paulo state, Brazil. The Corumbatai River basin is affected by the continuous use of fertilizer-derived uranium utilized in sugar cane crops, increasing the dissolved uranium concentration in the Corumbatai River (Santa Terezinha station) in the wet period to 43%. The weathering rate in the Corumbatai River basin utilizing the U-isotope modeling was 0.0265 mm/year (corresponding to 38,000 years to weather 1 m of rock under actual climatic conditions). However, when the inputs of anthropogenic uranium were considered, then a weathering rate of 0.022 mm/year (corresponding to 45,500 years to weather 1 m of rock) was determined. The removed material in the Corumbatai River basin is mainly from two sub-basins (the Cabecas River and Passa Cinco River), where the sandstones weather easier than the siltstones and claystones in the basin.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The ocean plays a major role in the global carbon cycle, and attempts to reconstruct past changes in the marine carbonate system are increasing. The speciation of dissolved uranium is sensitive to variations in carbonate system parameters, and previous studies have shown that this is recorded in the uranium-to-calcium ratio (U/Ca) of the calcite shells of planktonic foraminifera. Here we test whether U/Ca ratios of deep-sea benthic foraminifera are equally suited as an indicator of the carbonate system. We compare U/Ca in two common benthic foraminifer species (Planulina wuellerstorfi and Cibicidoides mundulus) from South Atlantic core top samples with the calcite saturation state (Delta [CO3**2-] = [CO3**2-]in situ - [CO3**2-]sat) of the ambient seawater and find significant negative correlations for both species. Compared with planktonic foraminifera, the sensitivity of U/Ca in benthic foraminifera to changes in Delta [CO3**2-] is about 1 order of magnitude higher. Although Delta [CO3**2-] exerts the dominant control on the average foraminiferal U/Ca, the intertest and intratest variability indicates the presence of additional factors forcing U/Ca.
Resumo:
Activity concentrations of dissolved U-234, U-238, Ra-226 and Ra-228 were determined in ground waters fromtwo deep wells drilled in Morungaba Granitoids (Southern Brazil). Sampling was done monthly for little longer than 1 year. Significant disequilibrium between U-238, U-234 and Ra-226 were observed in all samples. The variation of U-238 and U-234 activity concentrations and U-234/U-238 activity ratios is related to seasonal changes. Although the distance between the two wells is short (about 900m), systematic differences of activity concentrations of U isotopes, as well as of U-234/U-238, Ra-226/U-234 and Ra-228/Ra-226 activity ratios were noticed, indicating distinct host rock-water interactions. Slightly acidic ground water percolation through heterogeneous host rock, associated with different recharge processes, may explain uranium and radium isotope behavior. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Uranium isotopes were measured in waters and suspended particulate matters (SPM) of the main channel of Yellow River, China that were sampled during four field trips between August 2005 and July 2006. The results show that the concentration of dissolved U (2.04-7.83 mu g/l) and the activity ratio of U-234/U-238 (1.36-1.67) are much higher than the average U concentrations and activity ratios of global major rivers. Mass balance calculations using the results of simulated experiments and measurement data show that the section of the Yellow River between Lanzhou and Sanmenxia has its dissolved U derived from two sources: suspended sediments (68%) and groundwater/runoff from loess deposits (32%). Both sources are related to the heavy erosion of the Chinese Loess Plateau. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The Xiangshan U deposit, the largest hydrothermal U deposit in China, is hosted in late Jurassic felsic volcanic rocks although the U mineralization post dates the volcanics by at least 20 Ma. The mineralization coincides with intrusion of local mantle-derived mafic dykes formed during Cretaceous crustal extension in South China. Ore-forming fluids are rich in CO2, and U in the fluid is thought to have been dissolved in the form of UO2 (CO3)22− and UO2 (CO3) 34− complexes. This paper provides He and Ar isotope data of fluid inclusions in pyrites and C isotope data of calcites associated with U mineralization (pitchblende) in the Xiangshan U deposit. He isotopic compositions range between 0.1 and 2.0Ra (where Ra is the 3He/4He ratio of air=1.39×10−6) and correlates with 40Ar/36Ar; although there is potential for significant 3He production via 6Li(n,α)3H(β)3He reactions in a U deposit (due to abundant neutrons), nucleogenic production cannot account for either the 3He concentration in these fluids, nor the correlations between He and Ar isotopic compositions. It is more likely that the high 3He/4He ratios represent trapped mantle-derived gases. A mantle origin for the volatiles of Xiangshan is consistent with the δ13C values of calcites, which vary from −3.5‰ to −7.7‰, overlapping the range of mantle CO2. The He, Ar and CO2 characteristics of the ore-forming fluids responsible for the deposit are consistent with mixing between 3He- and CO2-rich mantle-derived fluids and CO2-poor meteoric fluids. These fluids were likely produced during Cretaceous extension and dyke intrusion which permitted mantle-derived CO2 to migrate upward and remobilize U from the acid volcanic source rocks, resulting in the formation of the U deposit. Subsequent decay of U within the fluid inclusions has reduced the 3He/4He ratio, and variations in U/3He result in the range in 3He/4He observed with U/3He ratios in the range 5–17×103 likely corresponding to U concentrations in the fluids b0.2 ppm.
Resumo:
Groundwaters from the Guarany aquifer located at the South American continent and sampled at four wells with described geological sections in São Paulo State, Brazil, were chemically and isotopically analysed with two aims: to evaluate the quality of this important hydrological resource and to investigate the possibility of using the natural uranium isotopes U-234 and U-238 as a chronological tool, since the U-234/U-238 activity ratio and dissolved U content data in groundwater systems have generated models for dating purposes.
Resumo:
This paper describes the results of a regional study involving the sampling of 60 pumped tubular wells drilled at the Parana sedimentary basin, Brazil, which was carried out with the purpose of evaluating the U speciation in the Botucatu-Piramboia aquifer. Uranium proved to be intensively dissolved even under the enhanced reducing conditions occurring at the most confined zones of the aquifer, and Eh-pH diagrams were utilized to evaluate the influence of temperature and pressure on the migration of the U-species within the aquifer.
Resumo:
Laboratory time-scale experiments were conducted on limestone and dolomite gravels from the Mendip Hills area, England, with the purpose of evaluating the release of U-238 and U-234 to different aqueous solutions. The U-234/U-238 activity ratio (AR) lab data were reliable to interpret the field data. The obtained values do not indicate a reduction in the amount of dissolved U and an increase in the AR of the remaining dissolved U as commonly observed for groundwater systems close to redox boundaries. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Groundwaters from the Guarany aquifer located at the South American continent and sampled at four wells with described geological sections in São Paulo State, Brazil, were chemically and isotopically analysed with two aims: to evaluate the quality of this important hydrological resource and to investigate the possibility of using the natural uranium isotopes 234U and 238U as a chronological tool, since the 234U/238U activity ratio and dissolved U content data in groundwater systems have generated models for dating purposes.