967 resultados para dioctadecyl dimethylammonium bromide
Resumo:
Among the clay minerals, montmorillonite is the most extensively studied material using as adsorbents, but palygorskite and its organically modified products have been least explored for their potential use in contaminated water remediation. In this study, an Australian palygorskite was modified with cationic surfactants octadecyl trimethylammonium bromide and dioctadecyl dimethylammonium bromide at different doses. A full structural characterization of prepared organo-palygorskite by X-ray diffraction, infrared spectroscopy, surface analysis and thermogravimetric analysis was performed. The morphological changes of palygorskite before and after modification were recorded using scanning electron microscopy, which showed the surfactant molecules can attach on the surface of rod-like crystals and thus can weaken the interactions between palygorskite single crystals. Real surfactants loadings on organo-palygorskites were also calculated based on thermogravimetric analysis. 1 CEC, 2 CEC octadecyl trimethylammonium bromide modified palygorskites, 1 CEC and 2 CEC dioctadecyl dimethylammonium bromide modified palygorskites absorbed as much as 12 mg/g, 42 mg/g, 9 mg/g and 25 mg/g of 2,4- dichlorophenoxyacetic acid respectively. This study has shown a potential on organo-palygorskites for organic herbicide adsorption especially anionic ones from waste water. In addition, equilibration time effects and the Langmuir and Freundlich models fitting were also investigated in details.
Resumo:
Amphotericin B (AmB) is widely used in the treatment of systemic fungal infections, despite its toxic effects. Nephrotoxicity, ascribed as the most serious toxic effect, has been related to the state of aggregation of the antibiotic. In search of the increase in AmB antifungal activity associated with low toxicity, several AmB-amphiphile formulations have been proposed. This work focuses on the structural characterization of a specific AmB formulation: AmB associated with sonicated dioctadecyl dimethylammonium bromide (DODAB) aggregates. Here, it was confirmed that sonicated DODAB dispersion is constituted by DODAB bicelles, and that monomeric AmB is much more soluble in bicelles than in DODAB vesicles. A new optical parameter is proposed for the estimation of the relative amount of amphiphile-bound monomeric AmB. With theoretical simulations of the spectra of spin labels incorporated in DODAB bicelles it was possible to prove that monomeric AmB binds preferentially to lipids located at the edges of DODAB bicelles, rigidifying them, and decreasing the polarity of the region. That special binding of monomeric AmB along the borders of bicelles, where the lipids are highly disorganized, could be used in the formulation of other carriers for the antibiotic, including mixtures of natural lipids which are known to form bicelles. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The control of molecular architectures has been exploited in layer-by-layer (LbL) films deposited on Au interdigitated electrodes, thus forming an electronic tongue (e-tongue) system that reached an unprecedented high sensitivity (down to 10-12 M) in detecting catechol. Such high sensitivity was made possible upon using units containing the enzyme tyrosinase, which interacted specifically with catechol, and by processing impedance spectroscopy data with information visualization methods. These latter methods, including the parallel coordinates technique, were also useful for identifying the major contributors to the high distinguishing ability toward catechol. Among several film architectures tested, the most efficient had a tyrosinase layer deposited atop LbL films of alternating layers of dioctadecyldimethylammonium bromide (DODAB) and 1,2-dipalmitoyl-sn-3-glycero-fosfo-rac-(1-glycerol) (DPPG), viz., (DODAB/DPPG)5/DODAB/Tyr. The latter represents a more suitable medium for immobilizing tyrosinase when compared to conventional polyelectrolytes. Furthermore, the distinction was more effective at low frequencies where double-layer effects on the film/liquid sample dominate the electrical response. Because the optimization of film architectures based on information visualization is completely generic, the approach presented here may be extended to designing architectures for other types of applications in addition to sensing and biosensing. © 2013 American Chemical Society.
Resumo:
Nanostructured films of dioctadecyldimethylammonium bromide (DODAB) and nickel tetrasulfonated phthalocyanine (NiTsPc) were layer-by-layer (LbL) assembled to achieve a synergistic effect considering the distinct properties of both materials. Prior to LbL growth, the effect of NiTsPc on the structure of DODAB vesicles in aqueous medium was investigated by differential scanning calorimetry (DSC). Therefore, DODAB/NiTsPc LbL films were prepared using NiTsPc at concentrations below and above the limit concentration of vesicle formation according to our DSC experiments. As a result, LbL films with distinct nanostructures were obtained, which were studied at micro and nanoscales by micro-Raman and atomic force microscopy, respectively. A linear growth of the LbL films was observed by ultraviolet-visible absorption spectroscopy. However, the bilayer thickness and the surface morphology of the LbL films were radically affected depending on NiTsPc concentration. The electrostatic interaction between DODAB and NiTsPc was identified via Fourier transform infrared (FTIR) absorption spectroscopy as the main driving force responsible for LbL growth. Because LbL films have been widely applied as transducers in sensing devices, DODAB/NiTsPc LbL films having distinct nanostructures were tested as proof-of-principle in preliminary sensing experiments toward dopamine detection using impedance spectroscopy (e-tongue system). The real capacitance vs. dopamine concentration curves were treated using Principal Component Analysis (PCA) and an equivalent electric circuit, revealing the role played by the LbL film nanostructure and the possibility of building calibration curves. © 2013 Elsevier B.V.
Resumo:
Chitosan has shown its potential as a non-viral gene carrier and an adsorption enhancer for subsequent drug delivery to cells. These results showed that chitosan acted as a membrane perturbant. However, there is currently a lack of direct experimental evidence of this membrane perturbance effect, especially for chitosans with low molecular weight (LMW). In this report, the interaction between a lipid (didodecyl dimethylammonium bromide; DDAB) bilayer and chitosan with molecular weight (MW) of 4200 Da was studied with cyclic voltammetry (CV), electrochemical impedance spectroscopy and surface plasmon resonance (SPR). A lipid bilayer was formed by-fusion of oppositely charged lipid vesicles on a mercaptopropionic acid (MPA)-modified gold surface to mimic a cell membrane. The results showed that the LMW chitosan could disrupt the lipid bilayer, and the effect seemed,to be in a concentration-dependent manner.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A simplified C32 monomycolyl glycerol (MMG) analogue demonstrated enhanced immunostimulatory activity in a dioctadecyl ammonium bromide (DDA)/Ag85B-ESAT-6 formulation. Elevated levels of IFN-gamma and IL-6 were produced in spleen cells from mice immunised with a C32 MMG analogue comparable activity to the potent Th1 adjuvant, trehalose 6,6'-di-behenate (TDB).
Resumo:
The ability of liposomes and microspheres to enhance the efficacy of a sub-unit antigen was investigated. Microspheres were optimised by testing a range of surfactants employed in the external aqueous phase of a water-in-oil-in-water (w/o/w) double emulsion solvent evaporation process for the preparation of microspherescomposed of poly(d,l-lactide-co-glycolide) and the immunological adjuvant dimethyl dioctadecyl ammonium bromide (DDA)and then investigated with regard to the physico-chemical and immunological characteristics of the particles produced. The results demonstrate that this parameter can affect the physico-chemical characteristics of these systems and subsequently, has a substantial bearing on the level of immune response achieved, both humoural and cell mediated, when employed for the delivery of the sub-unit tuberculosis vaccine antigen Ag85B-ESAT-6. Moreover, the microsphere preparations investigated failed to initiate immune responses at the levels achieved with an adjuvant DDA-based liposome formulation (DDA-TDB), further substantiating the superior ability of liposomes as vaccine delivery systems.
Resumo:
The combination of dimethyl dioctadecyl ammonium bromide (DDA) and the synthetic cord factor trehalose dibehenate (TDB) with Ag85B-ESAT-6 (H1 fusion protein) has been found to promote strong protective immune responses against Mycobacterium tuberculosis. The development of a vaccine formulation that is able to facilitate the requirements of sterility, stability and generation of a vaccine product with acceptable composition, shelf-life and safety profile may necessitate selected alterations in vaccine formulation. This study describes the implementation of a sterilisation protocol and the use of selected lyoprotective agents in order to fulfil these requirements. Concomitantly, close analysis of any alteration in physico-chemical characteristics and parameters of immunogenicity have been examined for this promising DDA liposome-based tuberculosis vaccine. The study addresses the extensive guidelines on parameters for non-clinical assessment, suitable for liposomal vaccines and other vaccine delivery systems issued by the World Health Organisation (WHO) and the European Medicines Agency (EMEA). Physical and chemical stability was observed following alteration in formulations to include novel cryoprotectants and radiation sterilisation. Immunogenicity was maintained following these alterations and even improved by modification with lysine as the cryoprotective agent for sterilised formulations. Taken together, these results outline the successful alteration to a liposomal vaccine, representing improved formulations by rational modification, whilst maintaining biological activity.
Resumo:
Dioctadecyl-dimethyl-ammonium bromide (DODAB) vesicles can be characterized by their differential scanning calorimetry (DSC) thermograms comprised of two endotherms at T (s) a parts per thousand 36 A degrees C and T (m) a parts per thousand 45 A degrees C in the heating, ascribed respectively to the subgel-to-gel and gel-to-liquid crystalline transitions, and two exotherms at T'(m) a parts per thousand 40 A degrees C and T'(s) a parts per thousand 16 A degrees C in the cooling, ascribed respectively to the liquid crystalline-to-gel and gel-to-subgel transitions. It has been reported but not proved that the T (m)-transitions, the T'(m)-transitions, the T (s)-transitions, and the T'(s)-transitions are reverse to each other, displaying hystheresis Delta T (m) a parts per thousand 5 A degrees C and Delta T (s) a parts per thousand 20-25 A degrees C, respectively. By investigating the effects of the initial scanning temperature (T (i)) on the transition enthalpies (Delta H (m), Delta H (s), Delta H'(m) and Delta H'(s)), we have seen that these transitions are the reverse to each other and display different kinetics.
Resumo:
The interaction of 10-hydroxycamptothecine (HCPT) with DNA under pseudo-physiological conditions (Tris-HCl buffer of pH 7.4), using ethidium bromide (EB) dye as a probe, was investigated with the use of spectrofluorimetry, UV-vis spectrometry and viscosity measurement. The binding constant and binding number for HCPT with DNA were evaluated as (7.1 ± 0.5) × 104 M-1 and 1.1, respectively, by multivariate curve resolution-alternating least squares (MCR-ALS). Moreover, parallel factor analysis (PARAFAC) was applied to resolve the three-way fluorescence data obtained from the interaction system, and the concentration information for the three components of the system at equilibrium was simultaneously obtained. It was found that there was a cooperative interaction between the HCPT-DNA complex and EB, which produced a ternary complex of HCPT-DNA-EB. © 2011 Elsevier B.V.
Resumo:
Raman microprobe spectra of the clay mineral Wyoming SWy-2-sodium montmorillonite intercalated with the surfactants, methyltrioctadecylammonium bromide (TOMA) dimethyldiotadecylammonium bromide (DODMA) and octadecyl-trimethylammonium bromide (ODTMA), have been measured in the CH2 stretching region at external pressures up to ~40 kbar with the aid of a diamond-anvil cell. In the case of the intercalated clays containing TOMA and DODMA, the Raman data afford evidence for gauche to trans conformational changes in the orientation of the CH2 chains in the surfactants with increasing pressure. These conformational changes are reversed completely upon the release of pressure.
Resumo:
Stimulated by the efficacy of copper (I) catalysed Huisgen-type 1,3-dipolar cycloaddition of terminal alkynes and organic azides to generate 1,4-disubstituted 1,2,3-triazole derivatives, the importance of ‘click’ chemistry in the synthesis of organic and biological molecular systems is ever increasing.[1] The mild reaction conditions have also led to this reaction gaining favour in the construction of interlocked molecular architectures.[2-4] In the majority of cases however, the triazole group simply serves as a covalent linkage with no function in the resulting organic molecular framework. More recently a renewed interest has been shown in the transition metal coordination chemistry of triazole ligands.[3, 5, 6] In addition novel aryl macrocyclic and acyclic triazole based oligomers have been shown to recognise halide anions via cooperative triazole C5-H….anion hydrogen bonds.[7] In light of this it is surprising the potential anion binding affinity of the positively charged triazolium motif has not, with one notable exception,[8] been investigated. With the objective of manipulating the unique topological cavities of mechanically bonded molecules for anion recognition purposes, we have developed general methods of using anions to template the formation of interpenetrated and interlocked structures.[9-13] Herein we report the first examples of exploiting the 1,2,3-triazolium group in the anion templated formation of pseudorotaxane and rotaxane assemblies. In an unprecedented discovery the bromide anion is shown to be a superior templating reagent to chloride in the synthesis of a novel triazolium axle containing [2]rotaxane. Furthermore the resulting rotaxane interlocked host system exhibits the rare selectivity preference for bromide over chloride...