148 resultados para dimethylbenz[a]anthracene
Resumo:
Simvastatin, a competitive inhibitor of HMG-CoA reductase widely used in the treatment and prevention of hyperlipidemia-related diseases, has recently been associated to in vitro anticancer stem cell (CSC) actions. However, these effects have not been confirmed in vivo. To assess in vivo anti-CSC effects of simvastatin, female Sprague-Dawley rats with 7,12-dimethyl-benz(a)anthracene (DMBA)-induced mammary cancer and control animals were treated for 14 days with either simvastatin (20 or 40 mg/kg/day) or soybean oil (N = 60). Tumors and normal breast tissues were removed for pathologic examination and immunodetection of CSC markers. At 40 mg/kg/day, simvastatin significantly reduced tumor growth and the expression of most CSC markers. The reduction in tumor growth (80%) could not be explained solely by the decrease in CSCs, since the latter accounted for less than 10% of the neoplasia (differentiated cancer cells were also affected). Stem cells in normal, nonneoplastic breast tissues were not affected by simvastatin. Simvastatin was also associated with a significant decrease in proliferative activity but no increase in cell death. In conclusion, this is the first study to confirm simvastatin anti-CSC actions in vivo, further demonstrating that this effect is specific for neoplastic cells, but not restricted to CSCs, and most likely due to inhibition of cell proliferation.
Resumo:
PURPOSE: To test an experimental model of chemical mammary carcinogenesis induction in rats. METHODS: Twenty young virgin Sprague-Dawley female rats, aged 47 days, received 20 mg of 7,12-dimethylbenz(a)anthracene (DMBA) intragastrically by gavage. Afterwards, at 8 and 13 weeks, their mammary glands were examined. At the end of the experiment, the animals were sacrificed, and the mammary tumors were measured and weighed. Tumor fragments were analyzed using light microscopy. RESULTS: Eight weeks after DMBA injection, 16 rats presented at least 1 breast tumor (80%). After 13 weeks, all of them (100%) developed breast carcinomas that were confirmed by histopathological analysis. CONCLUSION: This experimental animal model of chemical mammary induced carcinogenesis is feasible and can be used in further experiments on the role of tumorigenic biomodulator substances.
Resumo:
Chemoprotection by dietary agents is a promising strategy for cancer prevention. The aim of the present study was to evaluate the combined effect of tomato and garlic against 7,12-dimethylbenz- [a]anthracene (DMBA)-induced genetic damage and oxidative stress in 12-14-week-old male Swiss albino mice. The animals were randomized into experimental and control groups and divided into eight groups of five animals each. Group 1 animals were injected intraperitoneally with 35 mg/kg body weight DMBA suspended in peanut oil as a single dose. Groups 2-4 animals received tomato (500 mg/kg body weight), garlic (125 mg/kg body weight) and a combination of tomato and garlic for 5 days by gavage, respectively, followed by DMBA 1.5 h after the final feeding. The doses of tomato and garlic correspond to the average human daily consumption. Animals in groups 5, 6 and 7 received tomato alone, garlic alone and tomato + garlic combination, respectively, for 5 days. Group 8 animals received the same volume of water and served as control. The incidence of bone marrow micronuclei and the extent of lipid peroxidation and the concentrations of antioxidants glutathione, glutathione peroxidase and glutathione-S-transferase were measured in the liver, 48 h after DMBA exposure. Increased frequency of micronuclei and enhanced lipid peroxidation accompanied by compromised antioxidant defenses were observed in DMBA-treated animals. Although pretreatment with tomato or garlic significantly reduced the frequency of DMBA-induced bone marrow micronuclei, the combination of tomato and garlic exhibited more profound effect in inhibiting DMBA-induced genotoxicity and oxidative stress. We suggest that a broad spectrum of antimutagenic and anticlastogenic effects can be achieved through an effective combination of functional foods such as tomato and garlic.
Cytochrome P450 CYP1B1 determines susceptibility to 7,12-dimethylbenz[a]anthracene-induced lymphomas
Resumo:
CYP1B1-null mice, created by targeted gene disruption in embryonic stem cells, were born at the expected frequency from heterozygous matings with no observable phenotype, thus establishing that CYP1B1 is not required for mouse development. CYP1B1 was not detectable in cultured embryonic fibroblast (EF) or in different tissues, such as lung, of the CYP1B1-null mouse treated with the aryl hydrocarbon receptor agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin whereas the equivalent wild-type EF cells express basal and substantial inducible CYP1B1 and lung expresses inducible CYP1B1. CYP1A1 is induced to far higher levels than CYP1B1 in liver, kidney, and lung in wild-type mice and is induced to a similar extent in CYP1B1-null mice. 7,12-dimethylbenz[a]anthracene (DMBA) was toxic in wild-type EFs that express CYP1B1 but not CYP1A1. These cells effectively metabolized DMBA, consistent with CYP1B1 involvement in producing the procarcinogenic 3,4-dihydrodiol as a major metabolite, whereas CYP1B1-null EF showed no significant metabolism and were resistant to DMBA-mediated toxicity. When wild-type mice were administered high levels of DMBA intragastrically, 70% developed highly malignant lymphomas whereas only 7.5% of CYP1B1-null mice had lymphomas. Skin hyperplasia and tumors were also more frequent in wild-type mice. These results establish that CYP1B1, located exclusively at extrahepatic sites, mediates the carcinogenicity of DMBA. Surprisingly, CYP1A1, which has a high rate of DMBA metabolism in vitro, is not sufficient for this carcinogenesis, which demonstrates the importance of extrahepatic P450s in determining susceptibility to chemical carcinogens and validates the search for associations between P450 expression and cancer risk in humans.
Resumo:
The question was addressed whether the risk of cancer of an individual in a heterogeneous population can be predicted on the basis of measurable biochemical and biological variables postulated to be associated with the process of chemical carcinogenesis. Using the skin tumor model with outbred male NMRI mice, the latency time for the appearance of a papilloma was used as an indicator of the individual cancer risk. Starting at 8 weeks of age, a group of 29 mice was treated twice weekly with 20 nmol of 7,12-dimethylbenz[alpha]anthracene (DMBA) applied to back skin. The individual papilloma latency time ranged from 13.5 to 25 weeks of treatment. Two weeks after the appearance of the first papilloma in each mouse, an osmotic minipump delivering 5-bromo-2'-deoxyuridine was s.c. implanted and the mouse was killed 24 hr later. Levels of DMBA-DNA adducts, of 8-hydroxy-2'-deoxyguanosine, and various measures of the kinetics of cell division were determined in the epidermis of the treated skin area. The levels of 8-hydroxy-2'-deoxyguanosine and the fraction of cells in DNA replication (labeling index for the incorporation of 5-bromo-2'-deoxyuridine) were significantly higher in those mice that showed short latency times. On the other hand, the levels of DMBA-DNA adducts were lowest in animals with short latency times. The latter finding was rather unexpected but can be explained as a consequence of the inverse correlation seen for the labeling index: with each round of cell division, the adduct concentration is reduced to 50% because the new DNA strand is free of DMBA adducts until the next treatment. Under the conditions of this bioassay, therefore, oxygen radical-related genotoxicity and the rate of cell division, rather than levels of carcinogen-DNA adducts, were found to be of predictive value as indicators of an individual cancer risk.
Resumo:
A variety of polycyclic aromatic hydrocarbons and their dihydrodiol derivatives, arylamines, heterocyclic amines, and nitroarenes, were incubated with cDNA-based recombinant (Escherichia coli or Trichoplusia ni) systems expressing different forms of human cytochrome P450 (P450 or CYP) and NADPH-P450 reductase using Salmonella typhimurium, tester strain NM2009, and the resultant DNA damage caused by the reactive metabolites was detected by measuring expression of umu gene in the cells. Recombinant (bacterial) CYP1A1 was slightly more active than any of four CYP1B1 allelic variants, CYP1B1*1, CYP1B1*2, CYP1B1*3, and CYP1B1*6, in catalyzing activation of chrysene-1,2-diol, benz[a]anthracene-trans-1,2-, 3,4-, 5,6-, and 8,9-diol, fluoranthene-2,3-diol, dibenzo[a]pyrene, benzo[c]phenanthrene, and dibenz[a,h]anthracene and several arylamines and heterocyclic amines, whereas CYP1A1 and CYP1B1 enzymes had essentially similar catalytic specificities toward other procarcinogens, such as (+)-, (-)-, and (+/-)-benzo[a]pyrene-7,8-diol, 5-methylchrysene-1,2-diol, 7,12-dimethylbenz[a]anthracene-3,4-diol, dibenzo[a,l]pyrene-11,12-diol, benzo[b]fluoranthene-9,10-diol, benzo[c]chrysene, 5,6-dimethylchrysene-1,2-diol, benzo[c]phenanthrene-3,4-diol, 7,12-dimethylbenz[a]anthracene, benzo[a]pyrene, 5-methylchrysene, and benz[a]anthracene. We also determined activation of these procarcinogens by recombinant (T. ni) human P450 enzymes in S. typhimurium NM2009. There were good correlations between activities of procarcinogen activation by CYP1A1 preparations expressed in E. coli and T. ni cells, although basal activities with three lots of CYP1B1 in T. ni cells were very high without substrates and NADPH in our assay system. Using 14 forms of human P450S (but not CYP1B1) (in T. ni cells), we found that CY1P1A2, 2C9, 3A4, and 2C19 catalyzed activation of several of polycyclic aromatic hydrocarbons at much slower rates than those catalyzed by CYP1A1 and that other enzymes, including CYP2A6, 2B6, 2C8, 2C18, 2D6, 2E1, 3A5, 3A7, and 4A11, were almost inactive in the activation of polycyclic aromatic hydrocarbons examined here.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The most used animal models in oral cancer research are the hamster treated by dimethylbenzanthracene (DMBA), and the rat treated by 4-nitroquinoline 1-oxide (4NQO). The purpose of this study was to compare the DMBA-induced hamster tongue carcinogenesis and 4NQO-induced rat tongue carcinogenesis by means of morphological analysis. Male Wistar rats were distributed into three groups of ten animals each and treated with 50 ppm 4NQO solution by drinking water for 4, 12 or 20 weeks. A total of 18 Syrian golden hamsters were submitted to 0.5% DMBA (dissolved in acetone) topical application three times/week for 4, 12 and 20 weeks. The primary histopathological change i.e., hyperplasia and hyperkeratosis, was evidenced after 4 weeks treatment with DMBA. Regarding 12 weeks treatment, 4NQO and DMBA were able to induce morphological changes as depicted by hyperplasia and dysplasia. At 20 weeks, squamous cell carcinoma was found in the majority of animals for both carcinogens used. Taken together, our results suggest that the hamster experimental model disclosed aspects related with tongue carcinogenesis in lesser time than rats. Probably, such discrepancies depend strongly on route of administration and the susceptibility with respect to animal species. © 2006 Elsevier GmbH. All rights reserved.
Resumo:
Pós-graduação em Patologia - FMB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Squamous cell carcinoma (SCC) constitutes a microenvironment that could modulate the antitumor immune response. Also, tumor-infiltrating lymphocytes are believed to play complex regulatory roles in antitumor immunity against SCC. The presence of regulatory T cells (Tregs) has been associated with the suppression of tumor-reactive T cells. However, the underlying mechanism for this T cell dysfunction is not clear. We used a multistage model of SCC to examine the role of Treg cells during tumor development. 7,12-dimethylbenz[a]-anthracene/phorbol 12-myristate 13-acetate treatment and systemic depletion of Treg cells using an anti-CD25 monoclonal antibody (PC61) resulted in a decrease in the number and incidence of papilloma. Furthermore, CD25 depletion increased the proportion of CD8(+) and CD4(+) T cells that were isolated from tumor lesions. The levels of interleukin (IL)-1 beta, IL-10, IL-12, IL-13, interferon-gamma, transforming growth factor-beta and tumor necrosis factor-alpha, but not IL-17, were increased in the tumor microenvironment after Treg depletion. Therefore, our results indicated involvement of CD25(+) T cells in SCC development and in the suppression of the inflammatory immune response.
Resumo:
Background: Squamous cell carcinoma (SCC) is one of the most common human cancers worldwide. In SCC, tumour development is accompanied by an immune response that leads to massive tumour infiltration by inflammatory cells, and consequently, local and systemic production of cytokines, chemokines and other mediators. Studies in both humans and animal models indicate that imbalances in these inflammatory mediators are associated with cancer development. Methods: We used a multistage model of SCC to examine the involvement of elastase (ELA), myeloperoxidase (MPO), nitric oxide (NO), cytokines (IL-6, IL-10, IL-13, IL-17, TGF-β and TNF-α), and neutrophils and macrophages in tumour development. ELA and MPO activity and NO, IL-10, IL −17, TNF-α and TGF-β levels were increased in the precancerous microenvironment. Results: ELA and MPO activity and NO, IL-10, IL −17, TNF-α and TGF-β levels were increased in the precancerous microenvironment. Significantly higher levels of IL-6 and lower levels of IL-10 were detected at 4 weeks following 7,12-Dimethylbenz(a)anthracene (DMBA) treatment. Similar levels of IL-13 were detected in the precancerous microenvironment compared with control tissue. We identified significant increases in the number of GR-1+ neutrophils and F4/80+/GR-1- infiltrating cells in tissues at 4 and 8 weeks following treatment and a higher percentage of tumour-associated macrophages (TAM) expressing both GR-1 and F4/80, an activated phenotype, at 16 weeks. We found a significant correlation between levels of IL-10, IL-17, ELA, and activated TAMs and the lesions. Additionally, neutrophil infiltrate was positively correlated with MPO and NO levels in the lesions. Conclusion: Our results indicate an imbalance of inflammatory mediators in precancerous SCC caused by neutrophils and macrophages and culminating in pro-tumour local tissue alterations.