701 resultados para dietary selenium
Resumo:
The objective of this study was to determine the concentration of total selenium (Se) and the proportions of total Se comprised as selenomethionine (SeMet) and selenocysteine (SeCys) in the post mortem tissues of female pheasants (Phasianus Colchicus Torquator) offered diets containing graded additions of selenized enriched yeast (SY) or sodium selenite (SS). Thiobarbituric acid reactive substances (TBARS) and tissue glutathione peroxidase (GSH-Px) activity of breast (Pectoralis Major) were assessed at 0 and 5 d post-mortem. A total of 216 female pheasant chicks were enrolled onto the study. 24 birds were euthanased at the start of the study and samples of blood, breast muscle, leg muscle (Peroneus Longus and M. Gastrocnemius), heart, liver, kidney and gizzard collected for determination of total Se. Remaining birds were blocked by live weight and randomly allocated to one of four dietary treatments (n=48 birds/treatment) that either differed in Se source (SY vs. SS) or dose (Con [0.2 mg total Se/kg], SY-L and SS-L [0.3 mg/kg total Se as SY and SS, respectively], and SY-H [0.45 mg total Se/kg]). Following 42 and 91 days of treatment 24 birds/treatment were euthanased and samples of blood, breast muscle, leg muscle, heart, liver, kidney and gizzard retained for determination of total Se and the proportion of total Se comprised as SeMet or SeCys. Whole blood GSH-Px activity was determined at each time point. Tissue GSH-Px activity and TBARS were determined in breast tissue at the end of the study. There were positive responses (P<0.001) in both blood and tissues to the graded addition of SY to the diet but the same responses were not apparent in the blood and tissues of selenite supplemented birds receiving comparable doses. Although there were differences between tissue types in the distribution of SeMet and SeCys there were few differences between treatments. There were effects of treatment on erythrocyte GSH-Px activity (P = 0.012) with values being higher in treatments SY-H and SS-L when compared to the negative control and treatment SY-L. There were no effects of treatment on tissue GSH-Px activity which is reflected in the overall lack of any treatment effects on TBARS.
Resumo:
Reactive oxygen species (ROS) are reactive molecules containing oxygen, that form as byproducts of aerobic metabolism, including immune system processes. Too much ROS may cause oxidative stress. In this study, we examined whether it can also limit the production of immune system compounds. To assess the relationship between antioxidant status and immunity we evaluated the effect of dietary supplementation with organic selenium, given at various levels for 10 days, on the antioxidant and immune system of the pacu fish (Piaractus mesopotamicus). Fish fed a diet containing 0.6 mg Se-yeast kg(-1) showed significant improvement in antioxidant status, as well as in hematological and immunological profiles. Specifically, they had the highest counts for catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), red blood cells, and thrombocytes; the highest leukocyte count (particularly for monocytes); and the highest serum lysozyme activity. There was also a positive correlation between GPx and lysozyme in this group of fish. These findings indicate that short-term supplementation with 0.6 mg Se-yeast kg(-1) reestablished the antioxidative status, allowing the production of innate components which can boost immunity without the risk of oxidative stress. This study shows a relationship between oxidative stress and immunity, and, from a practical perspective, shows that improving immunity and health in pacu through the administration of selenium could improve their growth performance.
Resumo:
Rat skeletal muscle selenoprotein W cDNA was isolated and sequenced. The isolation strategy involved design of degenerate PCR primers from reverse translation of a partial peptide sequence. A reverse transcription-coupled PCR product from rat muscle mRNA was used to screen a muscle cDNA library prepared from selenium-supplemented rats. The cDNA sequence confirmed the known protein primary sequence, including a selenocysteine residue encoded by TGA, and identified residues needed to complete the protein sequence. RNA folding algorithms predict a stem-loop structure in the 3' untranslated region of the selenoprotein W mRNA that resembles selenocysteine insertion sequence (SE-CIS) elements identified in other selenocysteine coding cDNAs. Dietary regulation of selenoprotein W mRNA was examined in rat muscle. Dietary selenium at 0.1 ppm as selenite increased muscle mRNA 4-fold relative to a selenium-deficient diet. Higher dietary selenium produced no further increase in mRNA levels.
Resumo:
The Brazil nut (Bertholletia excelsa) of the Amazon region is consumed worldwide. It is rich in both monounsaturated fatty acids and polyunsaturated fatty acids and is known for its high selenium content. This study tested the hypothesis whether the consumption of this nut could affect the plasma lipids and apolipoproteins and some functional properties of the antiatherogenic high-density lipoprotein (HDL). Fifteen normolipidemic subjects aged 27.3 +/- 3.9 years and with body mass index of 23.8 +/- 2.8 kg/m(2) consumed 45 g of Brazil nuts per day during a 15-day period. On days 0 and 15, blood was collected for biochemical analysis, determination of HDL particle size, paraoxonase 1 activity, and lipid transfer from a lipoprotein-like nanoparticle to the HDL fraction. Brazil nut ingestion did not alter HDL, low-density lipoprotein cholesterol, triacylglycerols, apolipoprotein A-1, or apolipoprotein B concentrations. HDL particle diameter and the activity of antioxidative paraoxonase 1, mostly found in the HDL fraction, Were also unaffected. Supplementation increased the reception of cholesteryl esters (P <.05) by the HDL yet did not alter the reception of phospholipids, free cholesterol, or triacylglycerols. As expected, plasma selenium was significantly increased. However, the consumption of Brazil nuts for short duration by normolipidemic subjects in comparable amounts to those tested for other nuts did not alter serum lipid profile. The only alteration in HDL function was the increase in cholesteryl ester transfer. This latter finding may be beneficial because it would improve the nonatherogenic reverse cholesterol transport pathway. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Selenium functions as a co-factor for the reduction of antioxidant enzymes and is an important component of antioxidant enzymes. Dietary selenium significantly inhibits the induction of skin, liver, colon, and mammary tumours in experimental animals by a number of different carcinogens, as well as the induction of mammary tumours by viruses. Selenium shows a “U” shaped curve for functionality, whereby too little is as damaging as too much. At optimal levels, selenium may protect against the formation of DNA adducts, DNA or chromosome breakage, chromosome gain or loss, mitochondrial DNA, and telomere length and function. Aim of study: Investigate the relation between selenium and genotoxic effects in a human biomonitoring study applied to occupational health.
Resumo:
Apoptosis and necrosis are two distinct forms of cell death that can occur in response to different agents and stress conditions. In order to verify if the oxidative stress induced by dietary selenium and vitamin E deficiencies can lead muscle cells to apoptosis, one-day-old chicks were reared using diets differing in their vitamin E (0 or 10 IU/kg) and selenium (0 or 0.15 ppm) supplementation. Chick skeletal muscle tissue was obtained from 28-day-old animals and used to verify apoptosis occurrence based on caspase activity detection and DNA fragmentation. Antioxidant deficiency significantly increased caspase-like activity assessed by the hydrolysis of fluorogenic peptide substrates (Abz-peptidyl-EDDnp) at lambdaexc = 320 nm and lambdaem = 420 nm. Proteolytic activation was not accompanied by typical internucleosomal DNA fragmentation detected by field inversion gel electrophoresis. Although the general caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp(O-Me) fluoromethyl ketone (Z-VAD-fmk) (0 to 80 muM) did not block caspase-like activity when preincubated for 30 min with muscle homogenates, the hydrolyzed substrates presented the same cleavage profile in HPLC (at the aspartic acid residue) when incubated with the purified recombinant enzyme caspase-3. These data indicate that oxidative stress causes caspase-like activation in muscle cells and suggest that cell death associated with exudative diathesis (dietary deficiency of selenium and vitamin E) can follow the apoptotic pathway.
Resumo:
From the present study, it is clear that all the three metals, selenium, molybdenum and cobalt have significant effect on the antioxidant status of the shrimps. Selenium and molybdenum were observed to induce peroxidative damage at elevated levels. But at the same level, cobalt did not show such an effect. Selenium was found to be growth promoting at lower levels of dietary supplementation. Even though low levels of dietary selenium had a protective effect against the lipid peroxidation, the present study indicates that high levels of dietary selenium could promote lipid peroxidation. The selenium-dependent antioxidant enzyme, GPx behaved differently in muscle and hepatopancreas. A high concentration of selenium was required for the active expression of the enzyme in the muscle, where as in hepatopancreas maximum activity was observed at lower selenium concentration. Selenium supplementation had a positive effect on GSH concentration. The other antioxidant enzymes such as GST, SOD and CAT showed enhanced activity at higher concentration of selenium. Molybdenum supplementation significantly reduced the free radical scavenger enzymes SOD and CAT. This resulted in enhanced lipid peroxidation in tissues. The activity of antioxidant enzyme GPx and the concentration of the substrate for the enzyme, GSH also were lower at elevated levels of molybdenum supplementation. In addition to this amino acids and fatty acids were also altered in molybdenum supplemented groups. In trace amounts, dietary molybdenum exerts a beneficial effect on the growth and also in the activities of the enzymes XO and SO. At the same time it also indicates a possibility of oxidative damage as a result of the peroxidation caused by the activities of the enzymes SO and XO at elevated concentrations of molybdenum is also indicated. The absorption of various trace elements was also altered by molybdenum supplementation.Among the three metals studied, cobalt was the least toxic one at the administered levels. But this metal has a significant effect on the lipid content, amino acid composition, cholesterol levels and phospholipid levels. Increased growth was also observed as a result of cobalt supplementation in shrimps. The antioxidant system of the animal was activated by dietary cobalt. Tissue levels of the trace metals were also found to be altered in cobalt supplemented groups of shrimps.These studies, thus shows that influence of dietary trace metals calls for more detailed studies in farmed shrimp. They may hold the key to growth and even disease resistance in shrimp. But this still remains as a virgin field which demands more attention, especially in view of the increasing importance of shrimp farming.
Resumo:
The objectives were to determine effects of graded levels of selenized yeast derived from a specific strain of Saccharomyces cerevisiae (CNCM I-3060) on animal performance and in selenium concentrations in the blood, milk, feces, and urine of dairy cows compared with sodium selenite; and to provide preliminary data on the proportion of selenium as selenomethionine in the milk and blood. Twenty Holstein cows were used in a 5 × 5 Latin square design study in which all cows received the same total mixed rations, which varied only in source or concentration of dietary selenium. There were 5 experimental treatments. Total dietary selenium of treatment 1, which received no added selenium, was 0.15 mg/kg of dry matter, whereas values for treatments 2, 3, and 4, derived from selenized yeast, were 0.27, 0.33, and 0.40 mg/kg of dry matter, respectively. Treatment 5 contained 0.25 mg of selenium obtained from sodium selenite/kg of dry matter. There were no significant treatment effects on animal performance, and blood chemistry and hematology showed few treatment effects. Regression analysis noted significant positive linear effects of increasing dietary selenium derived from selenized yeast on selenium concentrations in the milk, blood, urine, and feces. In addition, milk selenium results indicated improved bioavailability of selenium from selenized yeast, compared with sodium selenite. Preliminary analyses showed that compared with sodium selenite, the use of selenized yeast increased the concentration of selenomethionine in the milk and blood. There was no indication of adverse effects on cow health associated with the use of selenized yeast.
Resumo:
Since estimated dietary selenium intake in the UK has declined steadily from around 60 mug day(-1) in 1975 to 34 mug day(-1) in 1997, there is a need to increase selenium intake from staple foods such as milk and milk products. An experiment was therefore done to investigate the relationship between dietary source and concentration of selenium and the selenium content of bovine milk. In a 3 x 3 factorial design, 90 mid-lactation Holstein dairy cows were supplemented over 8 weeks with either sodium selenite (S), a chelated selenium product (Selenium Metasolate(TM)) (C) or a selenium yeast (Sel-plex(TM)) (Y) at three different dietary inclusion levels of 0.38 (L), 0.76 (M) and 1.14 (H) mg kg(-1) dry matter (DM). Significant increases in milk selenium concentration were observed for all three sources with increasing inclusion level in the diet, but Y gave a much greater response (up to +65 mug l(-1)) than the other two sources of selenium (S and C up to +4 and +6 mug l(-1) respectively). The Y source also resulted in a substantially higher apparent efficiency of transfer of selenium from diet to milk than S or C. Feeding Y at the lowest dietary concentration, and thus within the maximum level permitted under EU regulations, resulted in milk with a selenium concentration of 28 mug l(-1). If the selenium concentration of milk in the UK was increased to this value, it would, at current consumption rates, provide an extra 8.7 mug selenium day(-1), or 11 and 14% of daily recommended national intake for men and women respectively. (C) 2004 Society of Chemical Industry.
Resumo:
Epidemiologic studies highlight the potential role of dietary selenium (Se) in colorectal cancer prevention. Our goal was to elucidate whether expression of factors crucial for colorectal homoeostasis is affected by physiologic differences in Se status. Using transcriptomics and proteomics followed by pathway analysis, we identified pathways affected by Se status in rectal biopsies from 22 healthy adults, including 11 controls with optimal status (mean plasma Se = 1.43 μM) and 11 subjects with suboptimal status (mean plasma Se = 0.86 μM). We observed that 254 genes and 26 proteins implicated in cancer (80%), immune function and inflammatory response (40%), cell growth and proliferation (70%), cellular movement, and cell death (50%) were differentially expressed between the 2 groups. Expression of 69 genes, including selenoproteins W1 and K, which are genes involved in cytoskeleton remodelling and transcription factor NFκB signaling, correlated significantly with Se status. Integrating proteomics and transcriptomics datasets revealed reduced inflammatory and immune responses and cytoskeleton remodelling in the suboptimal Se status group. This is the first study combining omics technologies to describe the impact of differences in Se status on colorectal expression patterns, revealing that suboptimal Se status could alter inflammatory signaling and cytoskeleton in human rectal mucosa and so influence cancer risk.
Resumo:
This study determined the correlation between serum cortisol levels and rabies antibody titers in cattle primo-vaccinated against rabies and supplemented with dietary selenium (Se). Sixty Nelore male calves (10 to 12 months old) received daily and individual dietary supplementation with 0, 3.6, 5.4 and 6.4 mg Se (groups Gc, G(3.6), G(5.4) and G(6.4), respectively). The animals were vaccinated against rabies (day 0) and subjected to handling stress in the corral for 120 days. Blood sampling procedures were performed on days 0, 15, 30, 60, 90 and 120. Cortisol levels increased until day 90, but had dropped significantly by day 120 (P < 0.01). Rabies antibody titers on days 30 and 90 were similar among Se-supplemented groups; in the control group, rabies antibodies decreased significantly from day 30 to 60, and 90 to 120. Serum cortisol levels and antibody titers were not correlated in most of the groups or blood sampling days. A positive correlation among these variables was found only in G(6.4) on days 60 (R = 0.513; P = 0.05) and 120 (R = 0.644; P = 0.009). In conclusion, repeated handling in the corral stresses cattle, but without compromising rabies humoral immune response.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effects of three dietary selenium (Se) levels (0.15, 0.35 and 0.5 mg/kg dry matter (dm) and of two Se-compounds (sodium selenite and Se-yeast) on the Se-status, liver function and claw health were studied using 36 fattening bulls in a two-factorial feeding trial that lasted 16 weeks. The claw health was assessed macroscopically and microscopically. Compared to the two control diets containing 0.15 mg Se/kg dm, the intake of the diets containing 0.35 and 0.50 mg Se/kg dm significantly (P < 0.05) increased the Se-concentration in serum, hair, liver and skeletal muscle. Compared to sodium selenite the intake of Se-yeast resulted in significantly (P < 0.05) higher Se-concentration in serum, liver and hair. Concerning the claw horn quality, there was no significant difference between the different groups; the animals receiving organic Se tended to have a better histological score (P = 0.06) at the coronary band than the groups fed with sodium selenite. The serum vitamin E level decreased significantly (P < 0.05) with increasing Se-intake, which had no influence (P > 0.1) on growth and liver function parameters. With the exception of the decrease of the serum vitamin E level indicating an oxidative stress caused by a high Se-intake, no negative effects of dietary selenium exceeding recommended levels for 4 months were observed.
Resumo:
The study, evaluated the addition of different concentrations of Se in mineral mixture affecting creatine kinase (CK) serum concentrations in cattle. 60 male, Nellore cattle, at about 12 months old, were randomly assigned to groups (15 calves/ group), Gc, G3,6, G5,4 or G6,4 (0, 3.6, 5.4, and 6.4 mg Se/bovine/day). The levels of serum CK in the cattle were not affected by neither the interaction selenium concentration x time nor the concentration of supplementation. However, CK levels increased over the experiment irrespective of dietary selenium concentration. In addition, the frequency of animals with CK levels above normal increased (p<0.10) in group G6,4. The concentrations of selenium studied here do not affect serum CK in cattle, but the daily concentration of 6.4 mg selenium is not recommended because it is possibly toxic effect.