991 resultados para depositional environment
Resumo:
The Ladinian Cassina beds belong to the fossiliferous levels of the world-famous Middle Triassic Monte San Giorgio Lagerstatte (UNESCO World Heritage List, Canton Ticino, Southern Alps). Although they are a rich archive for the depositional environment of an important thanatocoenosis, previous excavations focused on vertebrates and particularly on marine reptiles. In 2006, the Museo Cantonale di Storia Naturale (Lugano) started a new research project focusing for the first time on microfacies, micropalaeontological, palaeoecological and taphonomic analyses. So far, the upper third of the sequence has been excavated on a surface of around 40 m(2), and these new data complete those derived from new vertebrate finds (mainly fishes belonging to Saurichthys, Archaeosemionotus, Eosemionotus and Peltopleurus), allowing a better characterization of the basin. Background sedimentation on an anoxic to episodically suboxic seafloor resulted in a finely laminated succession of black shales and limestones, bearing a quasi-anaerobic biofacies, which is characterized by a monotypic benthic foraminiferal meiofauna and has been documented for the first time from the whole Monte San Giorgio sequence. Event deposition, testified by turbidites and volcaniclastic layers, is related to sediment input from basin margins and to distant volcanic eruptions, respectively. Fossil nekton points to an environment with only limited connection to the open sea. Terrestrial macroflora remains document the presence of emerged areas covered with vegetation and probably located relatively far away. Proliferation of benthic microbial mats is inferred on the basis of microfabrics, ecological considerations and taphonomic (both biostratinomic and diagenetic) features of the new vertebrate finds, whose excellent preservation is ascribed to sealing by biofilms. The occurrence of allochthonous elements allows an insight into the shallow-waters of the adjoining time-equivalent Salvatore platform. Finally, the available biostratigraphic data are critically reviewed.
Resumo:
Mode of access: Internet.
Resumo:
This research examined the influence of tectonic activity on submarine sedimentation processes, through a deposit-based analysis of turbidites in outcrop. A comprehensive field study of the Miocene Whakataki Formation yielded significant data that was analysed using methods of process-sedimentology, stratigraphy, and ichnology. Signatures of the tectonically active depositional environment were identifiable at very high resolution, from grain composition and texture to trace-fossil assemblages, as well as on a broader-scale in stratigraphic stacking patterns and structural deformation. From these results and environmental interpretations, an original facies characterisation and conceptual depositional model have been established.
Resumo:
Based on analyses of more than 600 surface sediment samples together with large amounts of previous sedimentologic and hydrologic data, the characteristics of modern sedimentary environments and dynamic depositional systems in the southern Yellow Sea (SYS) are expounded, and the controversial formation mechanism of muddy sediments is also discussed. The southern Yellow Sea shelf can be divided into low-energy sedimentary environment and high-energy sedimentary environment; the low-energy sedimentary environment can be further divided into cyclonic and anticyclonic ones, and the high-energy environment is subdivided into high-energy depositional and eroded environments. In the shelf low-energy environments, there developed muddy depositional system. In the central part of the southern Yellow Sea, there deposited the cold eddy sediments under the actions of a meso-scale cyclonic eddy (cold eddy), and in the southeast of the southern Yellow Sea, an anticyclonic eddy muddy depositional system (warm eddy sediment) was formed. These two types of sediments showed evident differences in grain size, sedimentation rate, sediment thickness and mineralogical characteristics. The high-energy environments were covered with sandy sediments on seabed; they appeared mainly in the west, south and northeast of the southern Yellow Sea. In the high-energy eroded environment, large amounts of sandstone gravels were distributed on seabed. In the high-energy depositional environment, the originally deposited fine materials (including clay and fine silt) were gradually re-suspended and then transported to a low-energy area to deposit again. In this paper, the sedimentation model of cyclonic and anticyclonic types of muddy sediments is established, and a systematic interpretation for the formation cause of muddy depositional systems in the southern Yellow Sea is given.
Resumo:
This paper is part of a special issue of Applied Geochemistry focusing on reliable applications of compositional multivariate statistical methods. This study outlines the application of compositional data analysis (CoDa) to calibration of geochemical data and multivariate statistical modelling of geochemistry and grain-size data from a set of Holocene sedimentary cores from the Ganges-Brahmaputra (G-B) delta. Over the last two decades, understanding near-continuous records of sedimentary sequences has required the use of core-scanning X-ray fluorescence (XRF) spectrometry, for both terrestrial and marine sedimentary sequences. Initial XRF data are generally unusable in ‘raw-format’, requiring data processing in order to remove instrument bias, as well as informed sequence interpretation. The applicability of these conventional calibration equations to core-scanning XRF data are further limited by the constraints posed by unknown measurement geometry and specimen homogeneity, as well as matrix effects. Log-ratio based calibration schemes have been developed and applied to clastic sedimentary sequences focusing mainly on energy dispersive-XRF (ED-XRF) core-scanning. This study has applied high resolution core-scanning XRF to Holocene sedimentary sequences from the tidal-dominated Indian Sundarbans, (Ganges-Brahmaputra delta plain). The Log-Ratio Calibration Equation (LRCE) was applied to a sub-set of core-scan and conventional ED-XRF data to quantify elemental composition. This provides a robust calibration scheme using reduced major axis regression of log-ratio transformed geochemical data. Through partial least squares (PLS) modelling of geochemical and grain-size data, it is possible to derive robust proxy information for the Sundarbans depositional environment. The application of these techniques to Holocene sedimentary data offers an improved methodological framework for unravelling Holocene sedimentation patterns.
Resumo:
Coal seam gas (CSG) exploration and development requires the abstraction of significant amounts of water. This is so because gas desorbtion in coal seams takes place only after aquifer pressure has been reduced by prolonged pumping of aquifer water. CSG waters have a specific geochemical signature which is a product of their formation process. These waters have high bicarbonate, high sodium, low calcium, low magnesium, and very low sulphate concentrations. Additionally, chloride concentrations may be high depending on the coal depositional environment. This particular signature is not only useful for exploration purposes, but it also highlights potential environmental issues that can arise as a consequence of CSG water disposal. Since 2002 L&M Coal Seam Gas Ltd and CRL Energy Ltd, have been involved in exploration and development of CSG in New Zealand. Anticipating disposal of CSG waters as a key issue in CSG development, they have been assessing CSG water quality along with exploration work. Coal seam gas water samples from an exploration well in Maramarua closely follow the geochemical signature associated with CSG waters. This has helped to identify CSG potential, while at the same time assessing the chemical characteristics and water generation processes in the aquifer. Neutral pH and high alkalinity suggest that these waters could be easily managed once the sodium and chloride concentrations are reduced to acceptable levels.
Resumo:
In their correspondence, He and colleagues question our conclusion of little or no uplift preceding Emeishan volcanism that we reported in our letter1. Debate concerns the nature of the contact between the Maokou limestone and Emeishan volcanics, the depositional environment and volumetric significance of mafic hydromagmatic deposits (MHDs), and evidence for symmetrical domal thinning. MHDs in the Daqiao section are separated from the Maokou limestone by 100 m of subaerial basaltic lavas, but elsewhere MHDs — previously interpreted as basal conglomerates2, 3 — directly overlie the Maokou2, 3. MHDs thus feature strongly in basal sections of the Emeishan lava succession, as also recently shown4 elsewhere in the Emeishan. An irregular surface at the top of the Maokou limestone has been interpreted as an erosional unconformity2, 3, but clastic deposits presented as evidence of this erosion2, 3 are MHDs produced by explosive magma–water interaction1. A clear demonstration that this irregular top surface is an erosional truncation of limestone reef facies (slope/rim, flat, lagoonal) is currently lacking, but is critical because reefs and carbonate platforms show considerable natural relief of tens of metres. The persistent hot, wet climate since the Oligocene has produced well-developed weathering profiles on exposed Palaeozoic marine sedimentary sequences5, but weathering and karst relief of the uppermost Maokou limestone underlying the flood basalts have not been properly documented, nor shown to be of middle Permian age and immediately preceding emplacement of the large igneous province.
Resumo:
Esta dissertação tem por objetivo o estudo geoquímico detalhado em poço da Bacia do Paraná, mais especificamente na cidade de Herval (RS), visando preencher algumas das lacunas existentes em termos de geoquímica orgânica da Formação Irati. Com base nos dados de carbono orgânico total, enxofre total, resíduo insolúvel, raios-gama, isótopos de carbono da matéria orgânica, pirólise Rock-Eval e biomarcadores individualizaram-se dez unidades quimioestratigráficas. Biomarcadores foram usados na caracterização dos ambientes deposicionais, na discriminação da origem da matéria orgânica e da influência da litologia. O ambiente deposicional das unidades A, B, C é óxico com salinidade normal. O topo da unidade B representa a superfície de inundação máxima, onde os valores de COT aumentam. Com base nos biomarcadores caracterizou-se um paleoambiente deposicional com alguma tendência anóxica. Nas unidades D e G ocorrem os folhelhos intercalados com carbonatos. Nestas, a concentração de COT é acima de 1%, porém, somente na unidade G há bom potencial gerador para gás e condensado. As unidades E e I apresentam elevados teores de carbono orgânico total, chegando a 16%. Os dados de pirólise Rock-Eval indicam um bom a excelente potencial gerador para óleo e gás. Os dados isotópicos possibilitaram a divisão da Formação Irati, no poço em estudo, em três ciclos. O primeiro, da base para o topo, corresponde ao Membro Taquaral, os outros dois correspondem ao Membro Assistência. No Membro Assistência o δ13C varia de acordo com a salinidade, aumento da produtividade primária e da preservação da matéria orgânica (anoxia).
Resumo:
Foram aplicadas as técnicas de petrografia orgânica e palinologia no testemunho do poço TMB-01-SP, localizado na porção central da Bacia de Taubaté. A análise visual de 41 lâminas organopalinológicas e palinológicas permitiu individualizar três palinofácies e posicionar temporalmente a seção. A partir dos resultados das análises quantitativas do conteúdo orgânico, observou-se o predomínio de matéria orgânica amorfa de origem lacustre determinada pela presença de algas Botryococcus braunii e Pediastrum sp. Subordinadamente, verificou-se também a presença de grãos de pólen, esporos, fitoclastos e tecidos cutículares. Devido ao predomínio de matéria orgânica amorfa e algas lacustres com contribuições menores de material proveniente de vegetais superiores, foi possível classificar o querogênio como sendo dos tipos I e III. A matéria orgânica amorfa apresentou fluorescência moderada a alta na maior parte da seção (palinofácies 1 e 3) indicando um ambiente de sedimentação redutor predominante. Os resultados do índice de coloração de esporos (ICE) entre 1,5 e 2,5 indicaram zona imatura de geração de hidrocarbonetos. A partir das análises palinológicas foi possível observar uma rica e diversificada associação com 49 espécies identificadas, incluindo grãos de pólen, esporos, algas e fungos. Os resultados palinoestratigráficos permitiram correlacionar a seção analisada à palinozona Parvisaccites? sp. (Regali et al., 1974) que corresponde ao Oligoceno. Entre os palinomorfos diagnósticos de idade e ambiente deposicional foram identificados: Catinipollis geiseltalensis, Cicatricosisporites dorogensis, Dacrydiumites florinii, Echitriletes muelleri, Ephedripites tertiarius, Perisyncolporites pokornyi, Podocarpidites marwickii, Polypodiaceiosporites potoniei, Psilatricolporites operculatus, Quadraplanus sp., Ulmodeipites krempii e Verrucatosporites usmensis. Os sedimentos estudados foram depositados em um paleoambiente lacustre raso sob condições redutoras ao longo de praticamente toda a seção.
Resumo:
O presente estudo aborda a caracterização quimioestratigráfica da Formação Irati (Permiano da Bacia doParaná), bem como a avaliçãodo potencial gerador. Foi realizada coleta sistemática de amostras de testemunho do poço SC-20-RS, para as quais foram realizadas análisesdos teores de COT, S e RI,Pirólise Rock-Eval e de Biomarcadores. Com base nesses dados,nove intervalos quimioestratigráficos (designados de A-I a partir da base) foram definidos nos 57,7 metros de espessura.Com base nos dados de biomarcadores obtidos pela cromatografia liquida e gasosa foi possível fazer um estudo mais detalhado da variação ambiental e input da matéria orgânica, e identificar como foi o ambiente deposicionaldo intervalo de maior potencial gerador da Bacia do Paraná. O Membro Assistência, desta formação, caracterizado por ter sido depositado em ambiente restrito, possui o intervalo mais promissor (Intervalo E), que compreende uma seção de cerca de 5 metros de espessura, nota-se que há uma maior preservação da matéria orgânica rica em hidrogênio(Tipo II) e aumento do COT% quando, o ambiente torna-se menos restrito, e a salinidade do ambiente diminui o que também foi identificado através dos biomarcadores. A Formação Irati constitui a fonte de folhelhos betuminosos utilizados pela Petrobrás para a obtenção industrial de óleo, gás, enxofre e subprodutos derivados a partir do processo de industrialização dessas rochas. É também uma das principais geradoras dos indícios de petróleo encontrados na Bacia do Paraná. Assim, a obtenção de dados que possam agregar conhecimentos sobre esta formação será sempre de extrema importância
Resumo:
A baseline environmental characterization of the inner Kachemak Bay, Alaska was conducted using the sediment quality triad approach based on sediment chemistry, sediment toxicity, and benthic invertebrate community structure. The study area was subdivided into 5 strata based on geophysical and hydrodynamic patterns in the bay (eastern and western intertidal mud flats, eastern and western subtidal, and Homer Harbor). Three to seven locations were synoptically sampled within each stratum using a stratified random statistical design approach. Three sites near the village of Port Graham and two sites in the footprint of a proposed Homer Harbor expansion were also collected for comparison. Concentrations of over 120 organic and metallic contaminants were analyzed. Ambient toxicity was assessed using two amphipod bioassays. A detailed benthic community condition assessment was performed. Habitat parameters (depth, salinity, temperature, dissolved oxygen, sediment grain size, and organic carbon content) that influence species and contaminant distribution were also measured at each sampling site. Sediments were mostly mixed silt and sand; characteristic of high energy habitats, with pockets of muddy zones. Organic compounds (PAHs, DDTs, PCBs, cyclodienes, cyclohexanes) were detected throughout the bay but at relatively low concentrations. Tributyltin was elevated in Homer Harbor relative to the other strata. With a few exceptions, metals concentrations were relatively low and probably reflect the input of glacial runoff. Relative to other sites, Homer Harbor sites were shown to have elevated concentrations of metallic and organic contaminants. The Homer Harbor stratum however, is a deep, low energy depositional environment with fine grained sediment. Concentrations of organic contaminants measured were five to ten times higher in the harbor sites than in the open bay sites. Concentration of PAHs is of a particular interest because of the legacy of oil spills in the region. There was no evidence of residual PAHs attributable to oil spills, outside of local input, beyond the confines of the harbor. Concentrations were one to ten times below NOAA sediment quality guidelines. Selected metal concentrations were found to be relatively elevated compared to other data collected in the region. However, levels are still very low in the scale of NOAA’s sediment quality guidelines, and therefore appear to pose little or no ecotoxicity threat to biota. Infaunal assessment showed a diverse assemblage with more than 240 taxa recorded and abundances greater than 3,000 animals m-22 in all but a few locations. Annelid worms, crustaceans, snails, and clams were the dominant taxa accounting for 63 %, 19%, 5%, and 7 % respectively of total individuals. Specific benthic community assemblages were identified that were distributed based on depth and water clarity. Species richness and diversity was lower in the eastern end of the bay in the vicinity of the Fox River input. Abundance was also generally lower in the eastern portion of the study area, and in the intertidal areas near Homer. The eastern portions of the bay are stressed by the sediment load from glacial meltwater. Significant toxicity was virtually absent. Conditions at the sites immediately outside the existing Homer Harbor facility did not differ significantly from other subtidal locations in the open Kachemak Bay. The benthic fauna at Port Graham contained a significant number of species not found in Kachemak Bay. Contaminant conditions were variable depending on specific location. Selected metal concentrations were elevated at Port Graham and some were lower relative to Kachemak Bay, probably due to local geology. Some organic contaminants were accumulating at a depositional site.
Resumo:
Mangroves are defined as a collection of woody plants and the associated fauna and flora that use a coastal depositional environment. Here the specific effects of salinity changes in mangroves have been examinated.