949 resultados para decay scheme
Resumo:
189W activities were produced via the 192Os(n, α) reaction using irradiation of isotopically enriched 192Os metallic powder of ~100 mg/cm2 with 14 MeV neutrons. The X-γ and γ-γ coincidence measurements were made so as to obtain γ rays from 189W decay and its coincidence relations. A new simple decay scheme of 189W including three γ rays of 210.2, 229.6 and 260.2 keV is proposed. Two new levels of 189Re at 470.4 and 489.8 keV are assigned.
Resumo:
The beta(+)/EC decay of doubly odd Ir-176 has been investigated using Nd-146(Cl-35, 5n gamma)Ir-176 heavy ion fusion evaporation reaction at 210MeV bombarding energy. With the aid of a helium-jet recoil fast tape transport system, the reaction products were transported to a low-background location for measurements. Based on the data analysis, the previously published gamma rays in Ir-176 decay were proved, moreover, 3 new levels and 10 new gamma rays were assigned to Ir-176 decay. The new level scheme of Os-176 with low excitation energy has been established. The time spectra of typical gamma rays clearly indicate a long-lived low-spin isomer in Ir-176 nuclide.
Resumo:
Sm-133 was produced via fusion evaporation in the reaction Ca-40+Ru-96. Its P-delayed proton decay was studied by means of "p-gamma" coincidence in combination with a He-jet tape transport system, including half-lives, proton energy spectra, gamma-transitions following the proton emissions, and the branching ratios to the low-lying states in the grand-daughter nuclei. The possible spins and parities of 133Sm were extracted by fitting the experimental data with a statistical model calculation. The configuration-constrained nuclear potential energy surfaces of Sm-133 were calculated by using the Woods-Saxon Strutinsky method. Comparing the experimental and calculated results, the spins and parities Of Sm-133 were assigned to be 5/2(+) and 1/2(-), which is reconciled with our published simple (EC+beta(+)) decay scheme Of Sm-113 in 2001. In addition, our experimental data on the beta-delayed proton decay of Yb-149 reported in Eur. Phys. J., 2001, A12: 1-4 was also analyzed by using the same method. The spin and parity of Yb-149 was assigned to be 1/2-.
Resumo:
The proton-rich isotope Sm-133 was produced via the fusion evaporation reaction Ca-40 + Ru-96. Its beta-delayed proton decay was studied by p-gamma coincidence in combination with a He-jet tape transport system, and half-lives, proton energy spectra, gamma-transitions following the proton emission, as well as beta-delayed proton branching ratios to the low-lying states in the grand-daughter nucleus were determined. Comparing the observed beta-delayed proton branching ratios with statistical model calculations, the best agreement is found assuming that only one level with the spin of 3/2 in Sm-133 decays or two levels with the spins of 1/2 and 5/2 decay with similar half-lives. The configuration-constrained nuclear potential energy surfaces of Sm-133 were calculated using the Woods-Saxon-Strutinsky method, which suggests a 1/2-ground state and a 5/2(+) isomer with an excitation energy of 120 keV. Therefore, the simple(EC+beta(+)) decay scheme of Sm-133 in Eur. Phys. J.A 11,277(2001) has been revised. In addition, our previous experimental data on the beta-delayed proton decay of Yb-149 reported in Eur. Phys. J. A 12,1 ( 2 0 0 1) was also analyzed using the same method. The spin-parity of Yb-149 is suggested to be 1/2(-).
Resumo:
The well known advantages of using surface plasmons, in particular the high sensitivity to surface adsorbates, are nearly always compromised in practice by the use of monochromatic excitation and the consequent lack of proper spectroscopic information. This limitation arises from the angle/wavelength selective nature of the surface plasmon resonance. The work described here uses an elegant broadband excitation/decay scheme in a substrate(silica)-grating profiled photoresist-Ag film geometry. Laser radiation of wavelength 488 nm, incident through the silica substrate, excites by near-field coupling a broad band of surface plasmons at the photoresist-Ag interface within the spectral range of the photoresist fluorescence. With a judicious choice of grating period this mode can cross-couple to the mode supported at the Ag-air interface. This latter mode can, in turn, couple out to light by virtue of the same grating profile. The spectral distribution of the light emitted due to this three-step process has been studied as a function of the angle of emission and depth of the grating profiled surface for each polarization. It is found that the optimum emission efficiency occurs with a groove depth in the region of 65 nm. This is considerably greater than the optimum depth of 40 nm required for surface plasmon-photon coupling at a Ag-air interface or, in other words, for the last step of the process in isolation.
Resumo:
Cellulose is the major constituent of most plants of interest as renewable sources of energy and is the most extensively studied form of biomass or biomass constituent. Predicting the mass loss and product yields when cellulose is subjected to increased temperature represents a fundamental problem in the thermal release of biomass energy. Unfortunately, at this time, there is no internally consistent model of cellulose pyrolysis that can organize the varied experimental data now available or provide a guide for additional experiments. Here, we present a model of direct cellulose pyrolysis using a multistage decay scheme that we first presented in the IJQC in 1984. This decay scheme can, with the help of an inverse method of assigning reaction rates, provide a reasonable account of the direct fast pyrolysis yield measurements. The model is suggestive of dissociation states of d-glucose (C6H10O5,), the fundamental cellulose monomer. The model raises the question as to whether quantum chemistry could now provide the dissociation energies for the principal breakup modes of glucose into C-1, C-2, C-3, C-4, and C-5 compounds. These calculations would help in achieving a more fundamental description of volatile generation from cellulose pyrolysis and could serve as a guide for treating hemicellulose and lignin, the other major biomass constituents. Such advances could lead to the development of a predictive science of biomass pyrolysis that would facilitate the design of liquifiers and gasifiers based upon renewable feedstocks. (C) 1998 John Wiley & Sons, Inc.
Resumo:
This work investigates the influence of chemical reactions on the release of elements from target-ion source units for ISOL facilities. Methods employed are thermochromatography, yield and hold-up time measurements; adsorption enthalpies have been determined for Ag and In. The results obtained with these methods are consistent. Elements exhibit reversible or irreversible reactions on different surfaces (Tantalum, quartz, sapphire). The interactions with surfaces inside the target-ion source unit can be used to improve the quality of radioactive ion beams. Spectroscopic data obtained at CERN-ISOLDE using a medium-temperature quartz transfer line show the effectivity of selective adsorption for beam purification. New gamma lines of 131Cd have been observed and a tentative decay scheme is presented.
Resumo:
In this paper, we present a scheme for implementing the unconventional geometric two-qubit phase gate with nonzero dynamical phase based on two-channel Raman interaction of two atoms in a cavity. We show that the dynamical phase and the total phase for a cyclic evolution are proportional to the geometric phase in the same cyclic evolution; hence they possess the same geometric features as does the geometric phase. In our scheme, the atomic excited state is adiabatically eliminated, and the operation of the proposed logic gate involves only the metastable states of the atoms; thus the effect of the atomic spontaneous emission can be neglected. The influence of the cavity decay on our scheme is examined. It is found that the relations regarding the dynamical phase, the total phase, and the geometric phase in the ideal situation are still valid in the case of weak cavity decay. Feasibility and the effect of the phase fluctuations of the driving laser fields are also discussed.