999 resultados para datadriven modeling
Resumo:
Microturbines are among the most successfully commercialized distributed energy resources, especially when they are used for combined heat and power generation. However, the interrelated thermal and electrical system dynamic behaviors have not been fully investigated. This is technically challenging due to the complex thermo-fluid-mechanical energy conversion processes which introduce multiple time-scale dynamics and strong nonlinearity into the analysis. To tackle this problem, this paper proposes a simplified model which can predict the coupled thermal and electric output dynamics of microturbines. Considering the time-scale difference of various dynamic processes occuring within microturbines, the electromechanical subsystem is treated as a fast quasi-linear process while the thermo-mechanical subsystem is treated as a slow process with high nonlinearity. A three-stage subspace identification method is utilized to capture the dominant dynamics and predict the electric power output. For the thermo-mechanical process, a radial basis function model trained by the particle swarm optimization method is employed to handle the strong nonlinear characteristics. Experimental tests on a Capstone C30 microturbine show that the proposed modeling method can well capture the system dynamics and produce a good prediction of the coupled thermal and electric outputs in various operating modes.
Resumo:
The integrated and process oriented nature of Enterprise Systems (ES) has led organizations to use process modeling as an aid in managing these systems. Enterprise Systems success factor studies explicitly and implicitly state the importance of process modeling and its contribution to overall Enterprise System success. However, no empirical evidence exists on how to conduct process modeling successfully and possibly differentially in the main phases of the ES life-cycle. This paper reports on an empirical investigation of the factors that influence process modeling success. An a-priori model with 8 candidate success factors has been developed to this stage. This paper introduces the research context and objectives, describes the research design and the derived model, and concludes by looking ahead to the next phases of the research design.
Resumo:
In Service-Oriented Architectures (SOAs), software systems are decomposed into independent units, namely services, that interact with one another through message exchanges. To promote reuse and evolvability, these interactions are explicitly described right from the early phases of the development lifecycle. Up to now, emphasis has been placed on capturing structural aspects of service interactions. Gradually though, the description of behavioral dependencies between service interactions is gaining increasing attention as a means to push forward the SOA vision. This paper deals with the description of these behavioral dependencies during the analysis and design phases. The paper outlines a set of requirements that a language for modeling service interactions at this level should fulfill, and proposes a language whose design is driven by these requirements.