986 resultados para data-projection


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Content-based image retrieval is still a challenging issue due to the inherent complexity of images and choice of the most discriminant descriptors. Recent developments in the field have introduced multidimensional projections to burst accuracy in the retrieval process, but many issues such as introduction of pattern recognition tasks and deeper user intervention to assist the process of choosing the most discriminant features still remain unaddressed. In this paper, we present a novel framework to CBIR that combines pattern recognition tasks, class-specific metrics, and multidimensional projection to devise an effective and interactive image retrieval system. User interaction plays an essential role in the computation of the final multidimensional projection from which image retrieval will be attained. Results have shown that the proposed approach outperforms existing methods, turning out to be a very attractive alternative for managing image data sets.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Most multidimensional projection techniques rely on distance (dissimilarity) information between data instances to embed high-dimensional data into a visual space. When data are endowed with Cartesian coordinates, an extra computational effort is necessary to compute the needed distances, making multidimensional projection prohibitive in applications dealing with interactivity and massive data. The novel multidimensional projection technique proposed in this work, called Part-Linear Multidimensional Projection (PLMP), has been tailored to handle multivariate data represented in Cartesian high-dimensional spaces, requiring only distance information between pairs of representative samples. This characteristic renders PLMP faster than previous methods when processing large data sets while still being competitive in terms of precision. Moreover, knowing the range of variation for data instances in the high-dimensional space, we can make PLMP a truly streaming data projection technique, a trait absent in previous methods.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Visualization of high-dimensional data has always been a challenging task. Here we discuss and propose variants of non-linear data projection methods (Generative Topographic Mapping (GTM) and GTM with simultaneous feature saliency (GTM-FS)) that are adapted to be effective on very high-dimensional data. The adaptations use log space values at certain steps of the Expectation Maximization (EM) algorithm and during the visualization process. We have tested the proposed algorithms by visualizing electrostatic potential data for Major Histocompatibility Complex (MHC) class-I proteins. The experiments show that the variation in the original version of GTM and GTM-FS worked successfully with data of more than 2000 dimensions and we compare the results with other linear/nonlinear projection methods: Principal Component Analysis (PCA), Neuroscale (NSC) and Gaussian Process Latent Variable Model (GPLVM).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The integration of nanostructured films containing biomolecules and silicon-based technologies is a promising direction for reaching miniaturized biosensors that exhibit high sensitivity and selectivity. A challenge, however, is to avoid cross talk among sensing units in an array with multiple sensors located on a small area. In this letter, we describe an array of 16 sensing units, of a light-addressable potentiometric sensor (LAPS), which was made with layer-by-Layer (LbL) films of a poly(amidomine) dendrimer (PAMAM) and single-walled carbon nanotubes (SWNTs), coated with a layer of the enzyme penicillinase. A visual inspection of the data from constant-current measurements with liquid samples containing distinct concentrations of penicillin, glucose, or a buffer indicated a possible cross talk between units that contained penicillinase and those that did not. With the use of multidimensional data projection techniques, normally employed in information Visualization methods, we managed to distinguish the results from the modified LAPS, even in cases where the units were adjacent to each other. Furthermore, the plots generated with the interactive document map (IDMAP) projection technique enabled the distinction of the different concentrations of penicillin, from 5 mmol L(-1) down to 0.5 mmol L(-1). Data visualization also confirmed the enhanced performance of the sensing units containing carbon nanotubes, consistent with the analysis of results for LAPS sensors. The use of visual analytics, as with projection methods, may be essential to handle a large amount of data generated in multiple sensor arrays to achieve high performance in miniaturized systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes the integration of information between Digital Library of Historical Cartography and Bibliographical Database (DEDALUS), both of the University of São Paulo (USP), to guarantee open, public access by Internet to the maps in the collection and make them available to users everywhere. This digital library was designed by Historical Cartography Studies Laboratory team (LECH/USP), and provides maps images on the Web, of high resolution, as well as such information on these maps as technical-scientific data (projection, scale, coordinates), printing techniques and material support that have made their circulation and cultural consumption possible. The Digital Library of Historical Cartography is accessible not only to the historical cartography researchers, but also to students and the general public. Beyond being a source of information about maps, the Digital Library of Historical Cartography seeks to be interactive, exchanging information and seeking dialogue with different branches of knowledge

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: The aim of this study is to implement augmented reality in real-time image-guided interstitial brachytherapy to allow an intuitive real-time intraoperative orientation. METHODS AND MATERIALS: The developed system consists of a common video projector, two high-resolution charge coupled device cameras, and an off-the-shelf notebook. The projector was used as a scanning device by projecting coded-light patterns to register the patient and superimpose the operating field with planning data and additional information in arbitrary colors. Subsequent movements of the nonfixed patient were detected by means of stereoscopically tracking passive markers attached to the patient. RESULTS: In a first clinical study, we evaluated the whole process chain from image acquisition to data projection and determined overall accuracy with 10 patients undergoing implantation. The described method enabled the surgeon to visualize planning data on top of any preoperatively segmented and triangulated surface (skin) with direct line of sight during the operation. Furthermore, the tracking system allowed dynamic adjustment of the data to the patient's current position and therefore eliminated the need for rigid fixation. Because of soft-part displacement, we obtained an average deviation of 1.1 mm by moving the patient, whereas changing the projector's position resulted in an average deviation of 0.9 mm. Mean deviation of all needles of an implant was 1.4 mm (range, 0.3-2.7 mm). CONCLUSIONS: The developed low-cost augmented-reality system proved to be accurate and feasible in interstitial brachytherapy. The system meets clinical demands and enables intuitive real-time intraoperative orientation and monitoring of needle implantation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analysing the molecular polymorphism and interactions of DNA, RNA and proteins is of fundamental importance in biology. Predicting functions of polymorphic molecules is important in order to design more effective medicines. Analysing major histocompatibility complex (MHC) polymorphism is important for mate choice, epitope-based vaccine design and transplantation rejection etc. Most of the existing exploratory approaches cannot analyse these datasets because of the large number of molecules with a high number of descriptors per molecule. This thesis develops novel methods for data projection in order to explore high dimensional biological dataset by visualising them in a low-dimensional space. With increasing dimensionality, some existing data visualisation methods such as generative topographic mapping (GTM) become computationally intractable. We propose variants of these methods, where we use log-transformations at certain steps of expectation maximisation (EM) based parameter learning process, to make them tractable for high-dimensional datasets. We demonstrate these proposed variants both for synthetic and electrostatic potential dataset of MHC class-I. We also propose to extend a latent trait model (LTM), suitable for visualising high dimensional discrete data, to simultaneously estimate feature saliency as an integrated part of the parameter learning process of a visualisation model. This LTM variant not only gives better visualisation by modifying the project map based on feature relevance, but also helps users to assess the significance of each feature. Another problem which is not addressed much in the literature is the visualisation of mixed-type data. We propose to combine GTM and LTM in a principled way where appropriate noise models are used for each type of data in order to visualise mixed-type data in a single plot. We call this model a generalised GTM (GGTM). We also propose to extend GGTM model to estimate feature saliencies while training a visualisation model and this is called GGTM with feature saliency (GGTM-FS). We demonstrate effectiveness of these proposed models both for synthetic and real datasets. We evaluate visualisation quality using quality metrics such as distance distortion measure and rank based measures: trustworthiness, continuity, mean relative rank errors with respect to data space and latent space. In cases where the labels are known we also use quality metrics of KL divergence and nearest neighbour classifications error in order to determine the separation between classes. We demonstrate the efficacy of these proposed models both for synthetic and real biological datasets with a main focus on the MHC class-I dataset.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work present the application of a computer package for generating of projection data for neutron computerized tomography, and in second part, discusses an application of neutron tomography, using the projection data obtained by Monte Carlo technique, for the detection and localization of light materials such as those containing hydrogen, concealed by heavy materials such as iron and lead. For tomographic reconstructions of the samples simulated use was made of only six equal projection angles distributed between 0º and 180º, with reconstruction making use of an algorithm (ARIEM), based on the principle of maximum entropy. With the neutron tomography it was possible to detect and locate polyethylene and water hidden by lead and iron (with 1cm-thick). Thus, it is demonstrated that thermal neutrons tomography is a viable test method which can provide important interior information about test components, so, extremely useful in routine industrial applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dental radiographs play the major role in the identification of victims in mass casualties besides DNA. Under circumstances such as those caused by the recent tsunami in Asia, it is nearly impossible to document the entire dentition using conventional x-rays as it would be too time consuming. Multislice computed tomography can be used to scan the dentition of a deceased within minutes, and the postprocessing software allows visualization of the data adapted to every possible antemortem x-ray for identification. We introduce the maximum intensity projection of cranial computed tomography data for the purpose of dental identification exemplarily in a case of a burned corpse. As transportable CT scanners already exist, these could be used to support the disaster victim identification teams in the field.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We introduce a flexible visual data mining framework which combines advanced projection algorithms from the machine learning domain and visual techniques developed in the information visualization domain. The advantage of such an interface is that the user is directly involved in the data mining process. We integrate principled projection algorithms, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates and billboarding, to provide a visual data mining framework. Results on a real-life chemoinformatics dataset using GTM are promising and have been analytically compared with the results from the traditional projection methods. It is also shown that the HGTM algorithm provides additional value for large datasets. The computational complexity of these algorithms is discussed to demonstrate their suitability for the visual data mining framework. Copyright 2006 ACM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Matrix population models, elasticity analysis and loop analysis can potentially provide powerful techniques for the analysis of life histories. Data from a capture-recapture study on a population of southern highland water skinks (Eulamprus tympanum) were used to construct a matrix population model. Errors in elasticities were calculated by using the parametric bootstrap technique. Elasticity and loop analyses were then conducted to identify the life history stages most important to fitness. The same techniques were used to investigate the relative importance of fast versus slow growth, and rapid versus delayed reproduction. Mature water skinks were long-lived, but there was high immature mortality. The most sensitive life history stage was the subadult stage. It is suggested that life history evolution in E. tympanum may be strongly affected by predation, particularly by birds. Because our population declined over the study, slow growth and delayed reproduction were the optimal life history strategies over this period. Although the techniques of evolutionary demography provide a powerful approach for the analysis of life histories, there are formidable logistical obstacles in gathering enough high-quality data for robust estimates of the critical parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent advances in the control of molecular engineering architectures have allowed unprecedented ability of molecular recognition in biosensing, with a promising impact for clinical diagnosis and environment control. The availability of large amounts of data from electrical, optical, or electrochemical measurements requires, however, sophisticated data treatment in order to optimize sensing performance. In this study, we show how an information visualization system based on projections, referred to as Projection Explorer (PEx), can be used to achieve high performance for biosensors made with nanostructured films containing immobilized antigens. As a proof of concept, various visualizations were obtained with impedance spectroscopy data from an array of sensors whose electrical response could be specific toward a given antibody (analyte) owing to molecular recognition processes. In addition to discussing the distinct methods for projection and normalization of the data, we demonstrate that an excellent distinction can be made between real samples tested positive for Chagas disease and Leishmaniasis, which could not be achieved with conventional statistical methods. Such high performance probably arose from the possibility of treating the data in the whole frequency range. Through a systematic analysis, it was inferred that Sammon`s mapping with standardization to normalize the data gives the best results, where distinction could be made of blood serum samples containing 10(-7) mg/mL of the antibody. The method inherent in PEx and the procedures for analyzing the impedance data are entirely generic and can be extended to optimize any type of sensor or biosensor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Summarize all relevant findings in published literature regarding the potential dose reduction related to image quality using Sinogram-Affirmed Iterative Reconstruction (SAFIRE) compared to Filtered Back Projection (FBP). Background: Computed Tomography (CT) is one of the most used radiographic modalities in clinical practice providing high spatial and contrast resolution. However it also delivers a relatively high radiation dose to the patient. Reconstructing raw-data using Iterative Reconstruction (IR) algorithms has the potential to iteratively reduce image noise while maintaining or improving image quality of low dose standard FBP reconstructions. Nevertheless, long reconstruction times made IR unpractical for clinical use until recently. Siemens Medical developed a new IR algorithm called SAFIRE, which uses up to 5 different strength levels, and poses an alternative to the conventional IR with a significant reconstruction time reduction. Methods: MEDLINE, ScienceDirect and CINAHL databases were used for gathering literature. Eleven articles were included in this review (from 2012 to July 2014). Discussion: This narrative review summarizes the results of eleven articles (using studies on both patients and phantoms) and describes SAFIRE strengths for noise reduction in low dose acquisitions while providing acceptable image quality. Conclusion: Even though the results differ slightly, the literature gathered for this review suggests that the dose in current CT protocols can be reduced at least 50% while maintaining or improving image quality. There is however a lack of literature concerning paediatric population (with increased radiation sensitivity). Further studies should also assess the impact of SAFIRE on diagnostic accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Computed tomography (CT) is one of the most used modalities for diagnostics in paediatric populations, which is a concern as it also delivers a high patient dose. Research has focused on developing computer algorithms that provide better image quality at lower dose. The iterative reconstruction algorithm Sinogram-Affirmed Iterative Reconstruction (SAFIRE) was introduced as a new technique that reduces noise to increase image quality. Purpose: The aim of this study is to compare SAFIRE with the current gold standard, Filtered Back Projection (FBP), and assess whether SAFIRE alone permits a reduction in dose while maintaining image quality in paediatric head CT. Methods: Images were collected using a paediatric head phantom using a SIEMENS SOMATOM PERSPECTIVE 128 modulated acquisition. 54 images were reconstructed using FBP and 5 different strengths of SAFIRE. Objective measures of image quality were determined by measuring SNR and CNR. Visual measures of image quality were determined by 17 observers with different radiographic experiences. Images were randomized and displayed using 2AFC; observers scored the images answering 5 questions using a Likert scale. Results: At different dose levels, SAFIRE significantly increased SNR (up to 54%) in the acquired images compared to FBP at 80kVp (5.2-8.4), 110kVp (8.2-12.3), 130kVp (8.8-13.1). Visual image quality was higher with increasing SAFIRE strength. The highest image quality was scored with SAFIRE level 3 and higher. Conclusion: The SAFIRE algorithm is suitable for image noise reduction in paediatric head CT. Our data demonstrates that SAFIRE enhances SNR while reducing noise with a possible reduction of dose of 68%.