774 resultados para data-driven decision making


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Very little research has examined K–12 educational technology decision-making in Canada. This collective case study explores the technology procurement process in Ontario’s publicly funded school districts to determine if it is informed by the relevant research, grounded in best practices, and enhances student learning. Using a qualitative approach, 10 senior leaders (i.e., chief information officers, superintendents, etc.) were interviewed. A combination of open-ended and closed-ended questions were used to reveal the most important factors driving technology acquisition, research support, governance procedures, data use, and assessment and return on investment (ROI) measures utilized by school districts in their implementation of educational technology. After participants were interviewed, the data were transcribed, member checked, and then submitted to “Computer-assisted NCT analysis” (Friese, 2014) using ATLAS.ti. The findings show that senior leaders are making acquisitions that are not aligned with current scholarship and not with student learning as the focus. It was also determined that districts struggle to use data-driven decision-making to support the governance of educational technology spending. Finally, the results showed that districts do not have effective assessment measures in place to determine the efficacy or ROI of a purchased technology. Although data are limited to the responses of 10 senior leaders, findings represent the technology leadership for approximately 746,000 Ontario students. The study is meant to serve as an informative resource for senior leaders and presents strategic and research-validated approaches to technology procurement. Further, the study has the potential to refine technology decision-making, policies, and practices in K–12 education.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The construction industry is characterised by fragmentation and suffers from lack of collaboration, often adopting adversarial working practices to achieve deliverables. For the UK Government and construction industry, BIM is a game changer aiming to rectify this fragmentation and promote collaboration. However it has become clear that there is an essential need to have better controls and definitions of both data deliverables and data classification. Traditional methods and techniques for collating and inputting data have shown to be time consuming and provide little to improve or add value to the overall task of improving deliverables. Hence arose the need in the industry to develop a Digital Plan of Work (DPoW) toolkit that would aid the decision making process, providing the required control over the project workflows and data deliverables, and enabling better collaboration through transparency of need and delivery. The specification for the existing Digital Plan of Work (DPoW) was to be, an industry standard method of describing geometric, requirements and data deliveries at key stages of the project cycle, with the addition of a structured and standardised information classification system. However surveys and interviews conducted within this research indicate that the current DPoW resembles a digitised version of the pre-existing plans of work and does not push towards the data enriched decision-making abilities that advancements in technology now offer. A Digital Framework is not simply the digitisation of current or historic standard methods and procedures, it is a new intelligent driven digital system that uses new tools, processes, procedures and work flows to eradicate waste and increase efficiency. In addition to reporting on conducted surveys above, this research paper will present a theoretical investigation into usage of Intelligent Decision Support Systems within a digital plan of work framework. Furthermore this paper will present findings on the suitability to utilise advancements in intelligent decision-making system frameworks and Artificial Intelligence for a UK BIM Framework. This should form the foundations of decision-making for projects implemented at BIM level 2. The gap identified in this paper is that the current digital toolkit does not incorporate the intelligent characteristics available in other industries through advancements in technology and collation of vast amounts of data that a digital plan of work framework could have access to and begin to develop, learn and adapt for decision-making through the live interaction of project stakeholders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les enjeux liés aux politiques éducatives ont considérablement changé au cours des dernières décennies. Ces changements sont liés, entre autres, à l’accroissement de l’imputabilité et de la reddition de compte qui est devenue une caractéristique importante des réformes curriculaires et pédagogiques. Les politiques à enjeux élevés exercent une pression énorme sur les districts et les écoles états-unienne afin qu’ils augmentent le rendement des élèves en utilisant des systèmes de conséquences (Hall & Ryan, 2011; Loeb & Strunk, 2007). Ces politiques envoient de puissants messages sur l'importance de certaines matières scolaires au détriment d'autres - circonscrivant les exigences en termes de compétences et de connaissances. La langue maternelle d’enseignement et les mathématiques sont devenues des mesures centrales sur lesquelles reposent l’évaluation et le degré de performance des districts et des écoles. Conséquemment, les administrateurs de districts et les directions d’écoles ont souvent recours à des réformes curriculaires et pédagogiques comme moyen d'augmenter le rendement des élèves dans les matières scolaires visées par ces politiques. Les politiques contraignent les acteurs scolaires de concentrer les ressources sur les programmes curriculaires et les évaluations, le développement professionnel, et la prise de décision pilotée par les données (Anagnostopoulos & Ruthledge, 2007; Honig & Hatch, 2004; Spillane, Diamond, et al., 2002; Weitz White & Rosenbaum, 2008). Cette thèse examine la manière dont les politiques à enjeux élevés opèrent quotidiennement dans les interactions et les pratiques au sein des écoles. Nous analysons plus particulièrement les différents messages provenant de la politique transmis aux acteurs scolaires sur les manières d'apporter des changements substantiels dans le curriculum et l'enseignement. Nous élargissons l’analyse en prenant en compte le rôle des administrateurs de district ainsi que des partenaires universitaires qui façonnent également la manière dont certains aspects des messages provenant des politiques sont transmis, négociés et/ou débattus et d’autres sont ignorés (Coburn & Woulfin, 2012). En utilisant l’analyse de discours, nous examinons le rôle du langage comme constituant et médiateur des interactions sociales entre les acteurs scolaires et d’autres parties prenantes. De telles analyses impliquent une investigation approfondie d’un nombre d’étude de cas limité. Les données utilisées dans cette thèse ont été colligées dans une école primaire états-unienne du mid-West. Cette étude de cas fait partie d’une étude longitudinale de quatre ans qui comprenait huit écoles dans les milieux urbains entre 1999 et 2003 (Distributed Leadership Studies, http://www.distributedleadership.org). La base de données analysée inclut des observations de réunions formelles et des entrevues auprès des administrateurs du district, des partenaires universitaires, de la direction d’école et des enseignants. En plus de l’introduction et de la problématique (chapitre 1) et de discussion et conclusion (chapitre 5), cette thèse comprend un ensemble de trois articles interdépendants. Dans le premier article (chapitre 2), nous effectuons une recension des écrits portant sur le domaine de l’implantation de politiques (policy implementation) et la complexité des relations locales, nationales et internationales dans les systèmes éducatifs. Pour démystifier cette complexité, nous portons une attention particulière à la construction de sens des acteurs scolaires comme étant une dimension clé du processus de mise en œuvre des réformes. Dans le deuxième article (chapitre 3), nous cherchons à comprendre les processus sociaux qui façonnent les réponses stratégiques des acteurs scolaires à l’égard des politiques du district et de l’état et en lien avec la mise en œuvre d’un curriculum prescrit en mathématiques. Plus particulièrement, nous explorons les différentes situations dans lesquelles les acteurs scolaires argumentent au sujet des changements curriculaires et pédagogiques proposés par les administrateurs de district et des partenaires universitaires afin d’augmenter les résultats scolaires en mathématiques dans une école à faible performance. Dans le troisième article (chapitre 4), nous cherchons à démystifier les complexités liées à l’amélioration de l’enseignement dans un environnement de politiques à enjeux élevés. Pour ce faire, nous utilisons l'interaction entre les notions d'agentivité et la structure afin d'analyser la manière dont les conceptions d’imputabilité et les idées qui découlent de l'environnement politique et les activités quotidiennes jouent dans les interactions entre les acteurs scolaires concernant sur l’enseignement de la langue maternelle. Nous explorons trois objectifs spécifiques : 1) la manière dont les politiques à enjeux élevés façonnent les éléments de l’enseignement qui sont reproduits et ceux qui sont transformés au fil du temps ; 2) la manière dont la compréhension des leaders de l’imputabilité façonne les aspects des messages politiques que les acteurs scolaires remarquent à travers les interactions et les conversations et 3) la manière les acteurs scolaires portent une attention particulière à certaines messages au détriment d’autres. Dans le dernier chapitre de cette thèse, nous discutons les forces et les limites de l’analyse secondaire de données qualitatives, les implications des résultats pour le domaine d’études de l’implantation de politiques et les pistes futures de recherches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the past decade, there has been a dramatic increase by postsecondary institutions in providing academic programs and course offerings in a multitude of formats and venues (Biemiller, 2009; Kucsera & Zimmaro, 2010; Lang, 2009; Mangan, 2008). Strategies pertaining to reapportionment of course-delivery seat time have been a major facet of these institutional initiatives; most notably, within many open-door 2-year colleges. Often, these enrollment-management decisions are driven by the desire to increase market-share, optimize the usage of finite facility capacity, and contain costs, especially during these economically turbulent times. So, while enrollments have surged to the point where nearly one in three 18-to-24 year-old U.S. undergraduates are community college students (Pew Research Center, 2009), graduation rates, on average, still remain distressingly low (Complete College America, 2011). Among the learning-theory constructs related to seat-time reapportionment efforts is the cognitive phenomenon commonly referred to as the spacing effect, the degree to which learning is enhanced by a series of shorter, separated sessions as opposed to fewer, more massed episodes. This ex post facto study explored whether seat time in a postsecondary developmental-level algebra course is significantly related to: course success; course-enrollment persistence; and, longitudinally, the time to successfully complete a general-education-level mathematics course. Hierarchical logistic regression and discrete-time survival analysis were used to perform a multi-level, multivariable analysis of a student cohort (N = 3,284) enrolled at a large, multi-campus, urban community college. The subjects were retrospectively tracked over a 2-year longitudinal period. The study found that students in long seat-time classes tended to withdraw earlier and more often than did their peers in short seat-time classes (p < .05). Additionally, a model comprised of nine statistically significant covariates (all with p-values less than .01) was constructed. However, no longitudinal seat-time group differences were detected nor was there sufficient statistical evidence to conclude that seat time was predictive of developmental-level course success. A principal aim of this study was to demonstrate—to educational leaders, researchers, and institutional-research/business-intelligence professionals—the advantages and computational practicability of survival analysis, an underused but more powerful way to investigate changes in students over time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent single-cell studies in monkeys (Romo et al., 2004) show that the activity of neurons in the ventral premotor cortex covaries with the animal's decisions in a perceptual comparison task regarding the frequency of vibrotactile events. The firing rate response of these neurons was dependent only on the frequency differences between the two applied vibrations, the sign of that difference being the determining factor for correct task performance. We present a biophysically realistic neurodynamical model that can account for the most relevant characteristics of this decision-making-related neural activity. One of the nontrivial predictions of this model is that Weber's law will underlie the perceptual discrimination behavior. We confirmed this prediction in behavioral tests of vibrotactile discrimination in humans and propose a computational explanation of perceptual discrimination that accounts naturally for the emergence of Weber's law. We conclude that the neurodynamical mechanisms and computational principles underlying the decision-making processes in this perceptual discrimination task are consistent with a fluctuation-driven scenario in a multistable regime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As huge amounts of data become available in organizations and society, specific data analytics skills and techniques are needed to explore this data and extract from it useful patterns, tendencies, models or other useful knowledge, which could be used to support the decision-making process, to define new strategies or to understand what is happening in a specific field. Only with a deep understanding of a phenomenon it is possible to fight it. In this paper, a data-driven analytics approach is used for the analysis of the increasing incidence of fatalities by pneumonia in the Portuguese population, characterizing the disease and its incidence in terms of fatalities, knowledge that can be used to define appropriate strategies that can aim to reduce this phenomenon, which has increased more than 65% in a decade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, there has been an increased interest on the neural mechanisms underlying perceptual decision making. However, the effect of neuronal adaptation in this context has not yet been studied. We begin our study by investigating how adaptation can bias perceptual decisions. We considered behavioral data from an experiment on high-level adaptation-related aftereffects in a perceptual decision task with ambiguous stimuli on humans. To understand the driving force behind the perceptual decision process, a biologically inspired cortical network model was used. Two theoretical scenarios arose for explaining the perceptual switch from the category of the adaptor stimulus to the opposite, nonadapted one. One is noise-driven transition due to the probabilistic spike times of neurons and the other is adaptation-driven transition due to afterhyperpolarization currents. With increasing levels of neural adaptation, the system shifts from a noise-driven to an adaptation-driven modus. The behavioral results show that the underlying model is not just a bistable model, as usual in the decision-making modeling literature, but that neuronal adaptation is high and therefore the working point of the model is in the oscillatory regime. Using the same model parameters, we studied the effect of neural adaptation in a perceptual decision-making task where the same ambiguous stimulus was presented with and without a preceding adaptor stimulus. We find that for different levels of sensory evidence favoring one of the two interpretations of the ambiguous stimulus, higher levels of neural adaptation lead to quicker decisions contributing to a speed–accuracy trade off.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatic environmental monitoring networks enforced by wireless communication technologies provide large and ever increasing volumes of data nowadays. The use of this information in natural hazard research is an important issue. Particularly useful for risk assessment and decision making are the spatial maps of hazard-related parameters produced from point observations and available auxiliary information. The purpose of this article is to present and explore the appropriate tools to process large amounts of available data and produce predictions at fine spatial scales. These are the algorithms of machine learning, which are aimed at non-parametric robust modelling of non-linear dependencies from empirical data. The computational efficiency of the data-driven methods allows producing the prediction maps in real time which makes them superior to physical models for the operational use in risk assessment and mitigation. Particularly, this situation encounters in spatial prediction of climatic variables (topo-climatic mapping). In complex topographies of the mountainous regions, the meteorological processes are highly influenced by the relief. The article shows how these relations, possibly regionalized and non-linear, can be modelled from data using the information from digital elevation models. The particular illustration of the developed methodology concerns the mapping of temperatures (including the situations of Föhn and temperature inversion) given the measurements taken from the Swiss meteorological monitoring network. The range of the methods used in the study includes data-driven feature selection, support vector algorithms and artificial neural networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vaikka liiketoimintatiedon hallintaa sekä johdon päätöksentekoa on tutkittu laajasti, näiden kahden käsitteen yhteisvaikutuksesta on olemassa hyvin rajallinen määrä tutkimustietoa. Tulevaisuudessa aiheen tärkeys korostuu, sillä olemassa olevan datan määrä kasvaa jatkuvasti. Yritykset tarvitsevat jatkossa yhä enemmän kyvykkyyksiä sekä resursseja, jotta sekä strukturoitua että strukturoimatonta tietoa voidaan hyödyntää lähteestä riippumatta. Nykyiset Business Intelligence -ratkaisut mahdollistavat tehokkaan liiketoimintatiedon hallinnan osana johdon päätöksentekoa. Aiemman kirjallisuuden pohjalta, tutkimuksen empiirinen osuus tunnistaa liiketoimintatiedon hyödyntämiseen liittyviä tekijöitä, jotka joko tukevat tai rajoittavat johdon päätöksentekoprosessia. Tutkimuksen teoreettinen osuus johdattaa lukijan tutkimusaiheeseen kirjallisuuskatsauksen avulla. Keskeisimmät tutkimukseen liittyvät käsitteet, kuten Business Intelligence ja johdon päätöksenteko, esitetään relevantin kirjallisuuden avulla – tämän lisäksi myös dataan liittyvät käsitteet analysoidaan tarkasti. Tutkimuksen empiirinen osuus rakentuu tutkimusteorian pohjalta. Tutkimuksen empiirisessä osuudessa paneudutaan tutkimusteemoihin käytännön esimerkein: kolmen tapaustutkimuksen avulla tutkitaan sekä kuvataan toisistaan irrallisia tapauksia. Jokainen tapaus kuvataan sekä analysoidaan teoriaan perustuvien väitteiden avulla – nämä väitteet ovat perusedellytyksiä menestyksekkäälle liiketoimintatiedon hyödyntämiseen perustuvalle päätöksenteolle. Tapaustutkimusten avulla alkuperäistä tutkimusongelmaa voidaan analysoida tarkasti huomioiden jo olemassa oleva tutkimustieto. Analyysin tulosten avulla myös yksittäisiä rajoitteita sekä mahdollistavia tekijöitä voidaan analysoida. Tulokset osoittavat, että rajoitteilla on vahvasti negatiivinen vaikutus päätöksentekoprosessin onnistumiseen. Toisaalta yritysjohto on tietoinen liiketoimintatiedon hallintaan liittyvistä positiivisista seurauksista, vaikka kaikkia mahdollisuuksia ei olisikaan hyödynnetty. Tutkimuksen merkittävin tulos esittelee viitekehyksen, jonka puitteissa johdon päätöksentekoprosesseja voidaan arvioida sekä analysoida. Despite the fact that the literature on Business Intelligence and managerial decision-making is extensive, relatively little effort has been made to research the relationship between them. This particular field of study has become important since the amount of data in the world is growing every second. Companies require capabilities and resources in order to utilize structured data and unstructured data from internal and external data sources. However, the present Business Intelligence technologies enable managers to utilize data effectively in decision-making. Based on the prior literature, the empirical part of the thesis identifies the enablers and constraints in computer-aided managerial decision-making process. In this thesis, the theoretical part provides a preliminary understanding about the research area through a literature review. The key concepts such as Business Intelligence and managerial decision-making are explored by reviewing the relevant literature. Additionally, different data sources as well as data forms are analyzed in further detail. All key concepts are taken into account when the empirical part is carried out. The empirical part obtains an understanding of the real world situation when it comes to the themes that were covered in the theoretical part. Three selected case companies are analyzed through those statements, which are considered as critical prerequisites for successful computer-aided managerial decision-making. The case study analysis, which is a part of the empirical part, enables the researcher to examine the relationship between Business Intelligence and managerial decision-making. Based on the findings of the case study analysis, the researcher identifies the enablers and constraints through the case study interviews. The findings indicate that the constraints have a highly negative influence on the decision-making process. In addition, the managers are aware of the positive implications that Business Intelligence has for decision-making, but all possibilities are not yet utilized. As a main result of this study, a data-driven framework for managerial decision-making is introduced. This framework can be used when the managerial decision-making processes are evaluated and analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An intelligent system that emulates human decision behaviour based on visual data acquisition is proposed. The approach is useful in applications where images are used to supply information to specialists who will choose suitable actions. An artificial neural classifier aids a fuzzy decision support system to deal with uncertainty and imprecision present in available information. Advantages of both techniques are exploited complementarily. As an example, this method was applied in automatic focus checking and adjustment in video monitor manufacturing. Copyright © 2005 IFAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A common interest in gene expression data analysis is to identify from a large pool of candidate genes the genes that present significant changes in expression levels between a treatment and a control biological condition. Usually, it is done using a statistic value and a cutoff value that are used to separate the genes differentially and nondifferentially expressed. In this paper, we propose a Bayesian approach to identify genes differentially expressed calculating sequentially credibility intervals from predictive densities which are constructed using the sampled mean treatment effect from all genes in study excluding the treatment effect of genes previously identified with statistical evidence for difference. We compare our Bayesian approach with the standard ones based on the use of the t-test and modified t-tests via a simulation study, using small sample sizes which are common in gene expression data analysis. Results obtained report evidence that the proposed approach performs better than standard ones, especially for cases with mean differences and increases in treatment variance in relation to control variance. We also apply the methodologies to a well-known publicly available data set on Escherichia coli bacterium.