991 resultados para data refinement
Resumo:
Action systems are a framework for reasoning about discrete reactive systems. Back, Petre and Porres have extended these action systems to continuous action systems, which can be. used to model hybrid systems. In this paper we define a refinement relation, and develop practical data refinement rules for continuous action systems. The meaning of continuous action systems is expressed in terms of a mapping from continuous action systems to action systems. First, we present a new mapping from continuous act ion systems to action systems, such that Back's definition of trace refinement is correct with respect to it. Second, we present a stream semantics that is compatible with the trace semantics, but is preferable to it because it is more general. Although action system trace refinement rules are applicable to continuous action systems with a stream semantics, they are not complete. Finally, we introduce a new data refinement rule that is valid with respect to the stream semantics and can be used to prove refinements that are not possible in the trace semantics, and we analyse the completeness of our new rule in conjunction with the existing trace refinement rules.
Resumo:
Data refinements are refinement steps in which a program’s local data structures are changed. Data refinement proof obligations require the software designer to find an abstraction relation that relates the states of the original and new program. In this paper we describe an algorithm that helps a designer find an abstraction relation for a proposed refinement. Given sufficient time and space, the algorithm can find a minimal abstraction relation, and thus show that the refinement holds. As it executes, the algorithm displays mappings that cannot be in any abstraction relation. When the algorithm is not given sufficient resources to terminate, these mappings can help the designer find a suitable abstraction relation. The same algorithm can be used to test an abstraction relation supplied by the designer.
Resumo:
In New Zealand and Australia, the BRACElet project has been investigating students' acquisition of programming skills in introductory programming courses. The project has explored students' skills in basic syntax, tracing code, understanding code, and writing code, seeking to establish the relationships between these skills. This ITiCSE working group report presents the most recent step in the BRACElet project, which includes replication of earlier analysis using a far broader pool of naturally occurring data, refinement of the SOLO taxonomy in code-explaining questions, extension of the taxonomy to code-writing questions, extension of some earlier studies on students' 'doodling' while answering exam questions, and exploration of a further theoretical basis for work that until now has been primarily empirical.
Resumo:
提出一种改进的数据求精规则,并用关系模式进行描述。引入全局状态来描述程序所有可能的输入和输出,允许非平凡的初始化,允许前向模拟和后向模拟,能应用于消除具体模型的不确定性晚于消除抽象模型的不确定性的情况。并用实例说明了在Isabelle定理证明器中规则的应用方法。
Resumo:
In the UK stroke is the third most common cause of death for women and the incidence in African Caribbean women is higher than the general population. Stroke burden has major consequences for the physical, mental and social health of African Caribbean women. In order to adjust to life after stroke individuals affected employ a range of strategies which may include personal, religious (church) or spiritual support (i.e. prayer), individual motivation, or resignation to life with a disability. This study explored these areas through the coping mechanisms that African Caribbean women utilised post stroke in the context of stroke recovery and lifestyle modification efforts needed to promote healthy living post stroke. A qualitative approach using Interpretative Phenomenological Analysis was adopted. Eight women were recruited into the study. Semi structured in-depth interviews were audio recorded and were transcribed verbatim. Data were analysed using a four-stage framework: familiarisation, sense making, developing themes and data refinement and analysis. Three main themes on coping emerged: the need to follow medical rules to manage stroke, strength and determination, and the use of religion and faith to cope with life after stroke. These findings illustrate both a tension between religious beliefs and the medical approach to stroke and highlight the potential benefits that religion and the church can play in stroke recovery. Implications for practice include acknowledgement and inclusion of religion and church based health promotion in post stroke recovery.
Resumo:
This dissertation focuses on rock thermal conductivity and its correlations with petrographic, textural, and geochemical aspects, especially in granite rocks. It aims at demonstrating the relations of these variables in an attempt to enlighten the behavior of thermal effect on rocks. Results can be useful for several applications, such as understanding and conferring regional thermal flow results, predicting the behavior of thermal effect on rocks based upon macroscopic evaluation (texture and mineralogy), in the building construction field in order to provide more precise information on data refinement on thermal properties emphasizing a rocky material thermal conductivity, and especially in the dimension stone industry in order to open a discussion on the use of these variables as a new technological parameter directly related to thermal comfort. Thermal conductivity data were obtained by using Anter Corporation s QuicklineTM -30 a thermal property measuring equipment. Measurements were conducted at temperatures ranging between 25 to 38 OC in samples with 2cm in length and an area of at least 6cm of diameter. As to petrography data, results demonstrated good correlations with quartz and mafics. Linear correlation between mineralogy and thermal conductivity revealed a positive relation of a quartz percentage increase in relation to a thermal conductivity increase and its decrease with mafic minerals increase. As to feldspates (K-feldspate and plagioclase) they show dispersion. Quartz relation gets more evident when compared to sample sets with >20% and <20%. Sets with more than 20% quartz (sienogranites, monzogranites, granodiorites, etc.), exhibit to a great extent conductivity values which vary from 2,5 W/mK and the set with less than 20% (sienites, monzonites, gabbros, diorites, etc.) have an average thermal conductivity below 2,5 W/mK. As to textures it has been verified that rocks considered thick/porphyry demonstrated in general better correlations when compared to rocks considered thin/medium. In the case of quartz, thick rocks/porphyry showed greater correlation factors when compared to the thin/medium ones. As to feldspates (K-feldspate and plagioclase) again there was dispersion. As to mafics, both thick/porphyry and thin/medium showed negative correlations with correlation factor smaller than those obtained in relation to the quartz. As to rocks related to the Streckeisen s QAP diagram (1976), they tend to fall from alcali-feldspates granites to tonalites, and from sienites to gabbros, diorites, etc. Thermal conductivity data correlation with geochemistry confirmed to a great extent mineralogy results. It has been seen that correlation is linear if there is any. Such behavior could be seen especially with the SiO2. In this case similar correlation can be observed with the quartz, that is, thermal conductivity increases as SiO2 is incremented. Another aspect observed is that basic to intermediate rocks presented values always below 2,5 W/mK, a similar behavior to that observed in rocks with quartz <20%. Acid rocks presented values above 2,5 W/mK, a similar behavior to that observed in rocks with quartz >20% (granites). For all the other cases, correlation factors are always low and present opposite behavior to Fe2O3, CaO, MgO, and TiO2. As to Al2O3, K2O, and Na2O results are not conclusive and are statistically disperse. Thermal property knowledge especially thermal conductivity and its application in the building construction field appeared to be very satisfactory for it involves both technological and thermal comfort aspects, which favored in all cases fast, cheap, and precise results. The relation between thermal conductivity and linear thermal dilatation have also shown satisfactory results especially when it comes to the quartz role as a common, determining phase between the two variables. Thermal conductivity studies together with rocky material density can function as an additional tool for choosing materials when considering structural calculation aspects and thermal comfort, for in the dimension stone case there is a small density variation in relation to a thermal conductivity considerable variation
Resumo:
Back and von Wright have developed algebraic laws for reasoning about loops in the refinement calculus. We extend their work to reasoning about probabilistic loops in the probabilistic refinement calculus. We apply our algebraic reasoning to derive transformation rules for probabilistic action systems. In particular we focus on developing data refinement rules for probabilistic action systems. Our extension is interesting since some well known transformation rules that are applicable to standard programs are not applicable to probabilistic ones: we identify some of these important differences and we develop alternative rules where possible. In particular, our probabilistic action system data refinement rules are new.
Resumo:
Hole-doped perovskites such as La1-xCaxMnO3 present special magnetic and magnetotransport properties, and it is commonly accepted that the local atomic structure around Mn ions plays a crucial role in determining these peculiar features. Therefore experimental techniques directly probing the local atomic structure, like x-ray absorption spectroscopy (XAS), have been widely exploited to deeply understand the physics of these compounds. Quantitative XAS analysis usually concerns the extended region [extended x-ray absorption fine structure (EXAFS)] of the absorption spectra. The near-edge region [x-ray absorption near-edge spectroscopy (XANES)] of XAS spectra can provide detailed complementary information on the electronic structure and local atomic topology around the absorber. However, the complexity of the XANES analysis usually prevents a quantitative understanding of the data. This work exploits the recently developed MXAN code to achieve a quantitative structural refinement of the Mn K-edge XANES of LaMnO3 and CaMnO3 compounds; they are the end compounds of the doped manganite series LaxCa1-xMnO3. The results derived from the EXAFS and XANES analyses are in good agreement, demonstrating that a quantitative picture of the local structure can be obtained from XANES in these crystalline compounds. Moreover, the quantitative XANES analysis provides topological information not directly achievable from EXAFS data analysis. This work demonstrates that combining the analysis of extended and near-edge regions of Mn K-edge XAS spectra could provide a complete and accurate description of Mn local atomic environment in these compounds.
Resumo:
The method of least squares could be used to refine an imperfectly related trial structure by adoption of one of the following two procedures: (i) using all the observed at one time or (ii) successive refinement in stages with data of increasing resolution. While the former procedure is successful in the case of trial structures which are sufficiently accurate, only the latter has been found to be successful when the mean positional error (i.e.<|[Delta]r|>) for the atoms in the trial structure is large. This paper makes a theoretical study of the variation of the R index, mean phase-angle error, etc. as a function of <|[Delta]r|> for data corresponding to different esolutions in order to find the best refinement procedure [i.e. (i) or (ii)] which could be successfully employed for refining trial structures in which <|[Delta]r|> has large, medium and low values. It is found that a trial structure for which the mean positional error is large could be refined only by the method of successive refinement with data of increasing resolution.