905 resultados para curing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this present work attempts have been made to study the glass transition temperature of alternative mould materials by using both microwave heating and conventional oven heating. In this present work three epoxy resins, namely R2512, R2515 and R2516, which are commonly used for making injection moulds have been used in combination with two hardeners H2403 and H2409. The magnetron microwave generator used in this research is operating at a frequency of 2.45 GHz with a hollow rectangular waveguide. In order to distinguish the effects between the microwave and conventional heating, a number of experiments were performed to test their mechanical properties such as tensile and flexural strengths. Additionally, differential scanning calorimeter technique was implemented to measure the glass transition temperature on both microwave and conventional heating. This study provided necessary evidences to establish that microwave heated mould materials resulted with higher glass transition temperature than the conventional heating. Finally, attempts were also made to study the microstructure of microwave-cured materials by using a scanning electron microscope in order to analyze the morphology of cured specimens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microwave heating technology is a cost-effective alternative way for heating and curing of used in polymer processing of various alternate materials. The work presented in this paper addresses the attempts made by the authors to study the glass transition temperature and curing of materials such as casting resins R2512, R2515 and laminating resin GPR 2516 in combination with two hardeners ADH 2403 and ADH 2409. The magnetron microwave generator used in this research is operating at a frequency of 2.45 GHz with a hollow rectangular waveguide. During this investigation it has been noted that microwave heated mould materials resulted with higher glass transition temperatures and better microstructure. It also noted that Microwave curing resulted in a shorter curing time to reach the maximum percentage cure. From this study it can be concluded that microwave technology can be efficiently and effectively used to cure new generation alternate polymer materials for manufacture of injection moulds in a rapid and efficient manner. Microwave curing resulted in a shorter curing time to reach the maximum percentage cure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an experimental study on the effect of presoaked lightweight aggregates (LWAs) for internal curing on water permeability, water absorption and resistance of concrete to chloride-ion penetration in comparison with those of a control concrete and a concrete with shrinkage reducing admixture (SRA) of similar water/cement ratios (w/c). In general, the concretes with LWA particles had initial water absorption, sorptivity and water permeability similar to or lower than those of the control concrete and the concrete with SRA. The charges passed, chloride migration coefficient and chloride diffusion coefficient of such concretes were in the same order as those of the control concrete and the concrete with SRA. However, the incorporation of the LWAs for internal curing reduced unit weight, compressive strength and elastic modulus of the concrete. Comparing the LWAs of different sizes for internal curing, finer particles were more efficient in reducing the shrinkage and generally resulted in less reduction in the unit weight, compressive strength, and elastic modulus. However, the increase in the more porous crushed LW particles in concrete seems to increase the penetration of chloride ions in the concrete. The concrete with SRA had initial water absorption, sorptivity, water permeability and resistance to chloride ion penetration comparable with those of the control concrete. The use of SRA in concrete does not affect the elastic modulus of the concrete, except for a minor influence on the compressive strength of the concrete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bond characteristics of masonry are partly affected by the type of mortar used, the techniques of dispersion of mortar and the surface texture of the concrete blocks. Additionally it is understood from the studies on conventional masonry, the bond characteristics are influenced by masonry age and curing methods as well as dryness/dampness at the time of testing. However, all these effects on bond for thin bed masonry containing polymer cement mortar are not well researched. Therefore, the effect of ageing and curing method on bond strength of masonry made with polymer cement mortar was experimentally investigated as part of an ongoing bond strength research program on thin bed concrete masonry at Queensland University of technology. This paper presents the experimental investigation of the flexural and shears bond characteristics of thin bed concrete masonry of varying age/ curing methods. Since, the polymer cement mortar is commonly used in thin bed masonry; bond development through two different curing conditions (dry/wet) was investigated in this research work. The results exhibit that the bond strength increases with the age under the wet and dry curing conditions; dry curing produce stronger bond and is considered as an advantage towards making this form of thin bed masonry better sustainable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silane grafted kaolinite (KGS) was prepared through grinding kaolinite and then grafting with 3-aminopropyltriethoxysilane. The influence of KGS on the curing kinetics of cycloaliphatic epoxy resin was studied by non-isothermal differential scanning calorimetry at different heating rates. The reaction activation energy (Ea) was determined based on the Flynn–Wall–Ozawa method. The results of dynamic differential scanning calorimetry (DSC) kinetic analysis show that the surface hydroxyl groups of clay decreases the Ea from 70.6 kJ mol− 1 to 62.8 kJ mol− 1 and accelerates the curing reaction of the epoxy resin. The silane grafting reactions consume the surface hydroxyl groups of kaolinite and lead to a decrease in the catalytic efficiency of KGS in the curing of epoxy resin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The co-curing process for advanced grid-stiffened (AGS) composite structure is a promising manufacturing process, which could reduce the manufacturing cost, augment the advantages and improve the performance of AGS composite structure. An improved method named soft-mold aided co-curing process which replaces the expansion molds by a whole rubber mold is adopted in this paper. This co-curing process is capable to co-cure a typical AGS composite structure with the manufacturer’s recommended cure cycle (MRCC). Numerical models are developed to evaluate the variation of temperature and the degree of cure in AGS composite structure during the soft-mold aided co-curing process. The simulation results were validated by experimental results obtained from embedded temperature sensors. Based on the validated modeling framework, the cycle of cure can be optimized by reducing more than half the time of MRCC while obtaining a reliable degree of cure. The shape and size effects of AGS composite structure on the distribution of temperature and degree of cure are also investigated to provide insights for the optimization of soft-mold aided co-curing process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attempts have been made to understand the curing reactions in carboxy-terminated polybutadiene (CTPB), which happens to be the most practical binder in advanced solid composite propellants. The curing of CTPB has been studied for different ratios of curing agents (MAPO and Epoxide) by gel content, molecular weight, crosslink density, and penetration temperature measurements, and the optimum composition of curators for effective curing of CTPB has been determined. Activation energy calculations on the curing of CTPB with 9.5% epoxide and 0.5% MAPO in the temperature range 75100°C gave 14.1 kcal/mol for which a diffusion-controlled or acid-catalyzed epoxide ring opening mechanism has been suggested for the curing process in CTPB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of some alcohols, acetylacetonates of transition metals, and manganese stearate and naphthenate on the curing reaction of a diglycidyl ether of ether of bisphenol-A with p-phenylenediamine is studied. Maximum catalytic activity is shown by the manganese compounds and triethanolamine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Towards the Breaking Day is an ethnography of belian, an exceptionally lively tradition of curing rituals performed by the Luangans, a politically marginalized population of swidden cultivators of Indonesian Borneo. The principal purpose of the study is to explore the significance of belian rituals in practice. It asks what belian rituals do socially, politically, and existentially for particular people in particular circumstances. Departing from conventional conceptions of rituals as ethereal liminal or insulated traditional domains, it demonstrates the importance of understanding rituals as emergent within their specific historical and social settings, and highlights the irreducibility of lived reality to epistemological certainty. Each chapter of the book represents an analysis of a concrete ritual performance, exemplifying a diversity of ritual genres, stylistic modalities and sensual ambiences, ranging from low-keyed, habitual affairs to drawn-out, crowd-seizing community rituals and innovative, montage-like cultural experiments. The study is based on eighteen months of ethnographic fieldwork in non-Christian Central Luangan communities in which ritual and everyday life are complexly intermixed. It is intended as a contribution to the anthropological study of ritual and to the ethnography of Borneo religion in which the study of shamanistic life rituals has been overshadowed by a long-standing fascination with death and funerary rites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Curing reactions of the viscous PS prepolymer and PS/AP propellant slurry have been studied. The molecular weight of the binder (separated from the propellant) and the prepolymer was found to increase to a maximum value, remain constant for some time, and then fall off between 50–125°C. The molecular weight of the binder was found to be less than corresponding prepolymer between 100–150°C but at lower temperatures (50–75°C) the reverse was found to be true. The increase in the molecular weight during curing at lower temperatures has been explained on the basis of Trommsdorff effect which gets support from the estimated activation energy (9 kcal mole−1) for the curing process. Curing was recognized as chain extension where the rate of polymerization becomes diffusion controlled below 75° C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of the curing behavior of an encapsulation material is very important and critical in terms of understanding the properties of the material. Differential scanning calorimetry and rheometry are two important tools that have been utilized to study curing reactions in polymeric systems. The present work deals with the curing of a mixture of hydride terminated polydimethylsiloxane, allyl functionalized alumina nanoparticles and Karstedt's catalyst. The real time curing behavior of the typical system was monitored non-isothermally by differential scanning calorimetry and rheometry. The results obtained from the respective techniques reveal that there is a good correlation between these two techniques. A mechanism is proposed for the curing reaction of the polymer system based on the curing curves obtained by the above two studies. In addition, the swelling study and contact angle measurement of the two composites was performed to evaluate the extent of cross-linking and hydrophobicity. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lime-fly ash mixtures are exploited for the manufacture of fly ash bricks finding applications in load bearing masonry. Lime-pozzolana reactions take place at a slow pace under ambient temperature conditions and hence very long curing durations are required to achieve meaningful strength values. The present investigation examines the improvements in strength development in lime-fly ash compacts through low temperature steam curing and use of additives like gypsum. Results of density-strength-moulding water content relationships, influence of lime-fly ash ratio, steam curing and role of gypsum on strength development, and characteristics of compacted lime-fly ash-gypsum bricks have been discussed. The test results reveal that (a) strength increases with increase in density irrespective of lime content, type of curing and moulding water content, (b) optimum lime-fly ash ratio yielding maximum strength is about 0.75 in the normal curing conditions, (c) 24 h of steam curing (at 80A degrees C) is sufficient to achieve nearly possible maximum strength, (d) optimum gypsum content yielding maximum compressive strength is at 2%, (e) with gypsum additive it is possible to obtain lime-fly ash bricks or blocks having sufficient strength (> 10 MPa) at 28 days of normal wet burlap curing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycidyl azide polymer (GAP) was cured through click chemistry by reaction of the azide group with bispropargyl succinate (BPS) through a 1,3-dipolar cycloaddition reaction to form 1,2,3-triazole network. The properties of GAP-based triazole networks are compared with the urethane cured GAP-systems. The glass transition temperature (T-g), tensile strength, and modulus of the system increased with crosslink density, controlled by the azide to propargyl ratio. The triazole incorporation has a higher T-g in comparison to the GAP-urethane system (T-g-20 degrees C) and the networks exhibit biphasic transitions at 61 and 88 degrees C. The triazole curing was studied using Differential Scanning Calorimetry (DSC) and the related kinetic parameters were helpful for predicting the cure profile at a given temperature. Density functional theory (DFT)-based theoretical calculations implied marginal preference for 1,5-addition over 1,4-addition for the cycloaddition between azide and propargyl group. Thermogravimetic analysis (TG) showed better thermal stability for the GAP-triazole and the mechanism of decomposition was elucidated using pyrolysis GC-MS studies. The higher heat of exothermic decomposition of triazole adduct (418kJmol(-1)) against that of azide (317kJmol(-1)) and better mechanical properties of the GAP-triazole renders it a better propellant binder than the GAP-urethane system.