990 resultados para crop cycle


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objetivando avaliar efeitos de períodos de infestação inicial na comunidade infestante e na produtividade da beterraba em sistema de semeadura direta e transplantio, conduziu-se um experimento em delineamento de blocos casualizados, esquema fatorial 2 x 13. Métodos de semeadura direta e transplante de mudas foram avaliados dentro de 13 períodos semanais crescentes de infestação. Importância relativa, densidade e matéria seca acumulada pelas plantas daninhas foram analisadas por regressão não-linear, assim como produtividade e estande da cultura de beterraba, que foram submetidos à análise de variância. Amaranthus viridis, Coronopus didymus, Cyperus rotundus, Digitaria nuda, Galinsoga parviflora e Nicandra physaloides foram as plantas daninhas mais importantes, destacando-se C. didymus. O acúmulo de matéria seca das plantas daninhas foi maior na cultura em semeadura direta, embora a densidade de plantas daninhas tenha sido mais alta em sistema de transplantio. A produtividade da beterraba transplantada foi maior que a da semeadura direta no tratamento livre de plantas daninhas. A convivência das plantas daninhas com a cultura pode permanecer por quatro e sete semanas depois da semeadura/transplantio, respectivamente, antes de reduzir a produtividade. A cultura em sistema de semeadura direta foi mais susceptível à interferência das plantas daninhas que a cultura sob sistema de transplantio.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work deals with the Priestley-Taylor model for evapotranspiration in different grown stages of a bean crop. Priestley and Taylor derived a practical Formulation for energy partitioning between the sensible and latent heat fluxes through the a parameter. Bowen ratio energy balance (BREB) was carried out for daily sensible and latent heat flux estimations in three different crop stages. Mean daily values of Priestley-Taylor a parameter were determined for eleven days during the crop cycle. Diurnal variation patterns of a are presented for the growing, flowering and graining periods. The mean values of 1.13 +/- 0.33, 1.26 +/- 0.74, 1.22 +/- 0.55 were obtained for a day in the growing, in the flowering and for graining periods, respectively. Eleven days values of a are shown and gave a mean value of 1.23 +/- 0.10 which agree on the reported literature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work deals with the Priestley-Taylor model for evapotranspiration in different grown stages of a bean crop. Priestley and Taylor derived a practical formulation for energy partitioning between the sensible and latent heat fluxes through the α parameter. Bowen ratio energy balance (BREB) was carried out for daily sensible and latent heat flux estimations in three different crop stages. Mean daily values of Priestley-Taylor α parameter were determined for eleven days during the crop cycle. Diurnal variation patterns of α are presented for the growing, flowering and graining periods. The mean values of 1.13 ± 0.33, 1.26 ± 0.74, 1.22 ± 0.55 were obtained for a day in the growing, in the flowering and for graining periods, respectively. Eleven days values of α are shown and gave a mean value of 1.23 ± 0.10 which agree on the reported literature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In order to establish a rational nitrogen (N) fertilisation and reduce groundwater contamination, a clearer understanding of the N distribution through the growing season and its dynamics inside the plant is crucial. In two successive years, a melon crop (Cucumis melo L. cv. Sancho) was grown under field conditions to determine the uptake of N fertiliser, applied by means of fertigation at different stages of plant growth, and to follow the translocation of N in the plant using 15N-labelled N. In 2006, two experiments were carried out. In the first experiment, labelled 15N fertiliser was supplied at the female-bloom stage and in the second, at the end of fruit ripening. Labelled 15N fertiliser was made from 15NH415NO3 (10 at.% 15N) and 9.6 kg N ha−1 were applied in each experiment over 6 days (1.6 kg N ha−1 d−1). In 2007, the 15N treatment consisted of applying 20.4 kg N ha−1 as 15NH415NO3 (10 at.% 15N) in the middle of fruit growth, over 6 days (3.4 kg N ha−1 d−1). In addition, 93 and 95 kg N ha−1 were supplied daily by fertigation as ammonium nitrate in 2006 and 2007, respectively. The results obtained in 2006 suggest that the uptake of N derived from labelled fertiliser by the above-ground parts of the plants was not affected by the time of fertiliser application. At the female-flowering and fruit-ripening stages, the N content derived from 15N-labelled fertiliser was close to 0.435 g m−2 (about 45% of the N applied), while in the middle of fruit growth it was 1.45 g m−2 (71% of the N applied). The N application time affected the amount of N derived from labelled fertiliser that was translocated to the fruits. When the N was supplied later, the N translocation was lower, ranging between 54% at female flowering and 32% at the end of fruit ripening. Approximately 85% of the N translocated came from the leaf when the N was applied at female flowering or in the middle of fruit growth. This value decreased to 72% when the 15N application was at the end of fruit ripening. The ammonium nitrate became available to the plant between 2 and 2.5 weeks after its application. Although the leaf N uptake varied during the crop cycle, the N absorption rate in the whole plant was linear, suggesting that the melon crop could be fertilised with constant daily N amounts until 2–3 weeks before the last harvest.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In Spain, large quantities of wine are produced every year (3,339,700 tonnes in 2011) (FAO, 2011) with the consequent waste generation. During the winemaking process, solid residues like grape stalks are generated, as well as grape marc and wine lees as by-products. According to the Council Regulation (EC) 1493/1999 on the common organization of the wine market, by-products coming from the winery industry must be sent to alcohol-distilleries to generate exhausted grape marc and vinasses. With an adequate composting treatment, these wastes can be applied to soils as a source of nutrients and organic matter. A three-year field experiment (2011, 2012 and 2013) was carried out in Ciudad Real (central Spain) to study the effects of wine-distillery waste compost application in a melon crop (Cucumis melo L.). Melon crop has been traditionally cultivated in this area with high inputs of water and fertilizers, but no antecedents of application of winery wastes are known. In a randomized complete block design, four treatments were compared: three compost doses consisted of 6.7 (D1), 13.3 (D2) and 20 t compost ha-1 (D3), and a control treatment without compost addition (D0). The soil was a shallow sandy-loam (Petrocalcic Palexeralfs) with a depth of 0.60 m and a discontinuous petrocalcic horizon between 0.60 and 0.70 m, slightly basic (pH 8.4), poor in organic matter (0.24%), rich in potassium (410 ppm) and with a medium level of phosphorus (22.1 ppm). During each growing period four harvests were carried out and total and marketable yield (fruits weighting <1 kg or visually rotten were not considered), fruit average weight and fruit number per plant were determined. At the end of the crop cycle, four plants per treatment were sampled and the nutrient content (N, P and K) was determined. Soil samplings (0-30 cm depth) were carried before the application of compost and at the end of each growing season and available N and P, as well as exchangeable K content were analyzed. With this information, an integrated analysis was carried out with the aim to evaluate the suitability of this compost as organic amendment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two field experiments using maize (Pioneer 31H50) and three watering regimes [(i) irrigated for the whole crop cycle, until anthesis, (ii) not at all (experiment 1) and (iii) fully irrigated and rain grown for the whole crop cycle (experiment 2)] were conducted at Gatton, Australia, during the 2003-04 season. Data on crop ontogeny, leaf, sheath and internode lengths and leaf width, and senescence were collected at 1- to 3-day intervals. A glasshouse experiment during 2003 quantified the responses of leaf shape and leaf presentation to various levels of water stress. Data from experiment 1 were used to modify and parameterise an architectural model of maize (ADEL-Maize) to incorporate the impact of water stress on maize canopy characteristics. The modified model produced accurate fitted values for experiment 1 for final leaf area and plant height, but values during development for leaf area were lower than observed data. Crop duration was reasonably well fitted and differences between the fully irrigated and rain-grown crops were accurately predicted. Final representations of maize crop canopies were realistic. Possible explanations for low values of leaf area are provided. The model requires further development using data from the glasshouse study and before being validated using data from experiment 2 and other independent data. It will then be used to extend functionality in architectural models of maize. With further research and development, the model should be particularly useful in examining the response of maize production to water stress including improved prediction of total biomass and grain yield. This will facilitate improved simulation of plant growth and development processes allowing investigation of genotype by environment interactions under conditions of suboptimal water supply.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the post-rainy (rabi) season in India around 3 million tonnes of sorghum grain is produced from 5.7 million ha of cropping. This underpins the livelihood of about 5 million households. Severe drought is common as the crop grown in these areas relies largely on soil moisture stored during the preceding rainy season. Improvement of rabi sorghum cultivars through breeding has been slow but could be accelerated if drought scenarios in the production regions were better understood. The sorghum crop model within the APSIM (Agricultural Production Systems sIMulator) platform was used to simulate crop growth and yield and the pattern of crop water status through each season using available historical weather data. The current model reproduced credibly the observed yield variation across the production region (R2=0.73). The simulated trajectories of drought stress through each crop season were clustered into five different drought stress patterns. A majority of trajectories indicated terminal drought (43%) with various timings of onset during the crop cycle. The most severe droughts (25% of seasons) were when stress began before flowering and resulted in failure of grain production in most cases, although biomass production was not affected so severely. The frequencies of drought stress types were analyzed for selected locations throughout the rabi tract and showed different zones had different predominating stress patterns. This knowledge can help better focus the search for adaptive traits and management practices to specific stress situations and thus accelerate improvement of rabi sorghum via targeted specific adaptation. The case study presented here is applicable to other sorghum growing environments. © 2012 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many banana producing regions around the world experience climate variability as a result of seasonal rainfall and temperature conditions, which result in sub-optimal conditions for banana production. This can create periods of plant stress which impact on plant growth, development and yields. Furthermore, diseases such as Fusarium wilt caused by Fusarium oxysporum f. sp. cubense, can become more predominant following periods of environmental stress, particularly for many culturally significant cultivars such as Ducasse (synonym Pisang Awak) (Musa ABB). The aim of this experiment was to determine if expression of symptoms of Fusarium wilt of bananas in a susceptible cultivar could be explained by environmental conditions, and if soil management could reduce the impact of the disease and increase production. An experiment was established in an abandoned commercial field of Ducasse bananas with a high incidence of Fusarium wilt. Vegetated ground cover was maintained around the base of banana plants and compared with plants grown in bare soil for changes in growth, production and disease symptoms. Expression of Fusarium wilt was found to be a function of water stress potential and the heat unit requirement for bananas. The inclusion of vegetative ground cover around the base of the banana plants significantly reduced the severity and incidence of Fusarium wilt by 20 % and altered the periods of symptom development. The growth of bananas and development of the bunch followed the accumulated heat units, with a greater number of bunched plants evident during warmer periods of the year. The weight of bunches harvested in a second crop cycle was increased when banana plants were grown in areas with vegetative ground cover, with fewer losses of plants due to Fusarium wilt.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is an increasing requirement for more astute land resource management through efficiencies in agricultural inputs in a sugar cane production system. A precision agriculture (PA) approach can provide a pathway for a sustainable sugarcane production system. One of the impediments to the adoption of PA practices is access to paddock-scale mapping layers displaying variability in soil properties, crop growth and surface drainage. Variable rate application (VRA) of nutrients is an important component of PA. However, agronomic expertise within PA systems has fallen well behind significant advances in PA technologies. Generally, advisers in the sugar industry have a poor comprehension of the complex interaction of variables that contribute to within-paddock variations in crop growth. This is regarded as a significant impediment to the progression of PA in sugarcane and is one of the reasons for the poor adoption of VRA of nutrients in a PA approach to improved sugar cane production. This project therefore has established a number of key objectives which will contribute to the adoption of PA and the staged progression of VRA supported by relevant and practical agronomic expertise. These objectives include provision of base soils attribute mapping that can be determined using Veris 3100 Electrical Conductivity (EC) and digital elevation datasets using GPS mapping technology for a large sector of the central cane growing region using analysis of archived satellite imagery to determine the location and stability of yield patterns over time and in varying seasonal conditions on selected project study sites. They also include the stablishment of experiments to determine appropriate VRA nitrogen rates on various soil types subjected to extended anaerobic conditions, and the establishment of trials to determine nitrogen rates applicable to a declining yield potential associated with the aging of ratoons in the crop cycle. Preliminary analysis of archived yield estimation data indicates that yield patterns remain relatively stable overtime. Results also indicate the where there is considerable variability in EC values there is also significant variation in yield.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

RESUMO: Este trabalho teve como objetivo comparar a severidade da mancha de Alternaria de genótipos de girassol em ambientes do Cerrado do Distrito Federal. Três experimentos foram avaliados, dois na Embrapa Cerrados (Planaltina, DF) e um localizado na Embrapa Produtos e Mercado (Recanto das Emas, DF). Foram feitas análises ao longo do ciclo da cultura com um intervalo de 15 dias, sendo a primeira aos 35 dias após emergência. Cada planta foi analisada em três partes: terço inferior, terço médio e terço superior. Ao final de cada experimento, a área abaixo da curva de progresso da doença (AACPD) foi calculada para cada genótipo. De acordo com os resultados observados, o ambiente de sequeiro na Embrapa Cerrados, que deteve a maior média da severidade da doença, entre os ambientes avaliados. Dentre os genótipos avaliados, MG 360 mostrou menor severidade da doença no sequeiro e AGUARA 06 no irrigado da Embrapa Cerrados. O genótipo BSG 42 na Embrapa Produtos e Mercado, se destacou pela menor severidade do fungo. Houve influência significativa do ambiente nos resultados de severidade da doença, que está estreitamente relacionada com os fatores climáticos como temperatura e umidade relativa do ar. A compreensão dessas condições favoráveis ao desenvolvimento do fungo é essencial quando se avalia a resistência em genótipos de girassol. ABSTRACT: This study had the purpose of comparing the severity of Alternaria leaf spot on genotypes of sunflower in the Brazilian Cerrado. Three field trials were established, two at Embrapa Cerrados (Planaltina, DF) and one at Embrapa Produtos e Mercados (Recanto das Emas, DF). Evaluations were made during the crop cycle every 15 days, the first one happening 35 days after crop emergency. Each plant was analyzed in three parts: lower, middle and upper thirds. At the end of each trial the average area under the disease progress curve (AUDPC), for each third, was calculated for all genotypes. According to the observed results, the dryland environment at Embrapa Cerrados had the highest mean disease severity, among the studied environments. Between the evaluated genotypes, MG360 showed less severity in dryland and AGUARA 06 in the irrigated environment at Embrapa Cerrados. At Embrapa Produtos e Mercado the genotype that presented the best performance was BRS G42. Environmental conditions deeply affected the trials, mainly temperature and relative humidity. Their influence on Alternaria leaf spot epidemics in the Cerrado region must be studied in more detail, to avoid misinterpreting data when evaluating sunflower genotypes for resistance to this important fungal disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Factors responsible for paddy soil arsenic accumulation in the tubewell irrigated systems of the Bengal Delta were investigated. Baseline (i.e., nonirrigated) and paddy soils were collected from 30 field systems across Bangladesh. For each field, soil sampled at dry season (Boro) harvest i.e., the crop cycle irrigated with tubewell water, was collected along a 90 m transect away from the tubewell irrigation source. Baseline soil arsenic levels ranged from 0.8 to 21. mg/kg, with lower values found on the Pliestocene Terrace around Gazipur (average, 1.6 +/- 0.2 mg/kg), and higher levels found in Holecene sediment tracts of Jessore and Faridpur (average, 6.6 +/- 1.0 mg/kg). Two independent approaches were used to assess the extent of arsenic build-up in irrigated paddy soils. First, arsenic build-up in paddy soil at the end of dry season production (irrigated - baseline soil arsenic) was regressed against number of years irrigated and tubewell arsenic concentration. Years of irrigation was not significant (P 0.711), indicating no year-on-year arsenic build-up, whereas tubewell As concentration was significant (P = 0.008). The second approach was analysis of irrigated soils for 20 fields over 2 successive years. For nine of the fields there was a significant (P <0.05) decrease in soil arsenic from year 1 to 2, one field had a significant increase, whereas there was no change for the remaining 10. Over the dry season irrigation cycle, soil arsenic built-up in soils at a rate dependent on irrigation tubewell water, 35* (tubewell water concentration in mg/kg, mg/L). Grain arsenic rises steeply at low soil/shoot arsenic levels, plateauing out at concentratations. Baseline soil arsenic at Faridpur sites corresponded to grain arsenic levels at the start of this saturation phase. Therefore, variation in baseline levels of soil arsenic leads to a large range in grain arsenic. Where sites have high baseline soil arsenic, further additional arsenic from irrigation water only leads to a gradual increase in grain arsenic concentration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aimed to establish relationships between maize yield and rainfall on different temporal and spatial scales, in order to provide a basis for crop monitoring and modelling. A 16-year series of maize yield and daily rainfall from 11 municipalities and micro-regions of Rio Grande do Sul State was used. Correlation and regression analyses were used to determine associations between crop yield and rainfall for the entire crop cycle, from tasseling to 30 days after, and from 5 days before tasseling to 40 days after. Close relationships between maize yield and rainfall were found, particularly during the reproductive period (45-day period comprising the flowering and grain filling). Relationships were closer on a regional scale than at smaller scales. Implications of the crop-rainfall relationships for crop modelling are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A dinâmica da água em sistema de plantio direto (PD) é alterada em relação ao preparo convencional (PC) devido a modificações na estrutura do solo e a presença de palha na superfície. Para avaliar estas diferenças foram conduzidos experimentos de campo, em 2001/02 e 2002/03, em Eldorado do Sul, RS. O objetivo geral foi quantificar alterações físico-hídricas no perfil e na superfície do solo em PD e PC, com ênfase na dinâmica da água e respostas das plantas de milho. Os sistemas de manejo do solo foram implantados na área em 1995. Foram avaliadas propriedades físicas, a movimentação e a armazenagem de água no solo. Mediu-se a infiltração e a capacidade de campo e monitorou-se a dinâmica da água durante o ciclo da cultura, enfocando a secagem do solo e a extração de água em períodos sem precipitação. Nestes períodos também foi determinada a evaporação da água na superfície e avaliadas respostas das plantas. Os efeitos do plantio direto se evidenciaram nas camadas de solo próximas à superfície. A mesoporosidade foi a propriedade física mais afetada, apresentando uma distribuição exponencial de mesoporos no plantio direto, enquanto no preparo convencional a mesma se aproximou de uma curva normal. Em geral, a condutividade hidráulica, a retenção e a disponibilidade de água foram mais elevadas em plantio direto, principalmente, próximo à superfície. O solo em PD também apresentou maior umidade volumétrica com menor energia de retenção, resultando em redução no avanço da frente de secagem do solo e extração de água. A evaporação também foi maior em PD, demonstrando que a maior umidade no solo em plantio direto se deve ao aumento na capacidade de armazenagem de água. O aprofundamento radicular foi sempre maior no preparo convencional. O plantio direto altera propriedades físicas ligadas à dinâmica da água, proporcionando maior disponibilidade hídrica no solo ao longo do tempo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Avaliou-se a influência da disposição de mangueiras gotejadoras nos canteiros e a injeção ou não de cloro na água de irrigação, nas condições sanitárias do solo e da alface americana irrigada (Lactuca sativa L.) com águas receptoras de efluentes urbanos. Foram realizadas análises microbiológicas de amostras de água do solo e da alface, no decorrer de todo o ciclo de cultivo. Objetivou-se determinar a possível existência de Salmonella spp. e de formas evolutivas de parasitos humanos e a quantidade de coliformes fecais, em pontos e épocas diferentes do experimento, impedindo assim o consumo da alface. Os resultados não indicaram a presença dos dois primeiros em nenhuma das amostras, mas sim de parasitos não humanos (nematóides) de vida livre no solo. em relação à quantidade de coliformes fecais (NMP ml-1), o valor encontrado na cultura atende às exigências da Secretaria de Vigilância Sanitária do Ministério da Saúde brasileiro, porém a presença dos nematóides em quantidades superiores ao permitido pela Organização Mundial de Saúde (OMS) inviabiliza o seu consumo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A field trial was carried out in Brazil in March 2002 with the aim to evaluate the effects of different timing and extension of weedy period on maize productivity. The hybrid Pioneer 30K75 was sowed under 7 t ha(-1) mulching promoted by glyphosate spraying. The treatments were divided in two groups: In the first group, weeds were maintained since the maize sowing until different periods in the crop cycle: 0, 14, 28, 42, 56, 70, and 150 days (harvesting time). In the second group, the maize crop was kept weed free for the same periods of the first group. Weed control was done through hand hoeing. A complete randomized blocks experimental design with five replications was used for plots distribution in the field. Nonlinear regression model was used to study the effects of weedy or weedfree periods on maize productivity. Weed community included 13 families and 31 species. Asteraceae, Poaceae, and Euphorbiaceae were the most abundant families. Results showed that under no tillage condition with 7 t ha-1 mulching at sowing time, the maize crop could cohabit with weed community for 54 days without any yield lost. on the other hand, if the crop was kept weed free for 27 days, the weed interference was not enable to reduce maize production. According to these results one weed control measure between 27 and 54 days after crop emergence could be enough to avoid any reduction in maize productivity.