969 resultados para cost estimating testing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous experience and research indicated that the Pareto Principle (80/20 Principle) has been widely used in many industries to achieve more with less. The study described in this paper concurs that this principle can be applied to improve the estimating accuracy and efficiency, especially in design development stage of projects. In fact, establishing an effective cost estimating model to improve accuracy and efficiency in design development stage has been a subject, which has attracted many research attentions over several decades. For over almost 40 years, research studies indicate that using the 80/20 Principle is one of the approaches. However, most of these studies were built by assumption, theoretical analysis or questionnaire survey. The objective of this research is to explore a logical and systematic method to establish a cost estimating model based on the Pareto Principle. This paper includes extensive literatures review on cost estimating accuracy and efficiency in the construction industry that points out the current gap of knowledge area and understanding of the topical. These reviews assist in developing the direction for the research and explore the potential methodology of using the Pareto Principle in the new cost estimating model. The findings of this paper suggest that combining the Pareto Principle with statistical analysis could be used as the technique to improve the accuracy and efficiency of current estimating methods in design development stage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Martin Skitmore introduces a most "remarkable couple", Rod and Annie Stewart of Huntsville, Alabama (and elsewhere), and their post retirement business, Mobile Data Services. Contrary to popular expectations, Rod and Annie are not only computer-friendly, but are almost entirely dependent on the new technology for their survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cost estimating has been acknowledged as a crucial component of construction projects. Depending on available information and project requirements, cost estimates evolve in tandem with project lifecycle stages; conceptualisation, design development, execution and facility management. The premium placed on the accuracy of cost estimates is crucial to producing project tenders and eventually in budget management. Notwithstanding the initial slow pace of its adoption, Building Information Modelling (BIM) has successfully addressed a number of challenges previously characteristic of traditional approaches in the AEC, including poor communication, the prevalence of islands of information and frequent reworks. Therefore, it is conceivable that BIM can be leveraged to address specific shortcomings of cost estimation. The impetus for leveraging BIM models for accurate cost estimation is to align budgeted and actual cost. This paper hypothesises that the accuracy of BIM-based estimation, as more efficient, process-mirrors of traditional cost estimation methods, can be enhanced by simulating traditional cost estimation factors variables. Through literature reviews and preliminary expert interviews, this paper explores the factors that could potentially lead to more accurate cost estimates for construction projects. The findings show numerous factors that affect the cost estimates ranging from project information and its characteristic, project team, clients, contractual matters, and other external influences. This paper will make a particular contribution to the early phase of BIM-based project estimation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cost estimating is a key task within Quantity Surveyors’ (QS) offices. Provision of an accurate estimate is vital to ensure that the objectives of the client are met by staying within the client’s budget. Building Information Modelling (BIM) is an evolving technology that has gained attention in the construction industries all over the world. Benefits from the use of BIM include cost and time savings if the processes used by the procurement team are adapted to maximise the benefits of BIM. BIM can be used by QSs to automate aspects of quantity take-off and the preparation of estimates, decreasing turnaround time and assist in controlling errors and inaccuracies. The Malaysian government has decided to require the use of BIM for its projects beginning from 2016. However, slow uptake is reported in the use of BIM both within companies and to support collaboration within the Malaysian industry. It has been recommended that QSs to start evaluating the impact of BIM on their practices. This paper reviews the perspectives of QSs in Malaysia towards the use of BIM to achieve more dependable results in their cost estimating practice. The objectives of this paper include identifying strategies in improving practice and potential adoption drivers that lead QSs to BIM usage in their construction projects. From the expert interviews, it was found out that, despite still using traditional methods and not practising BIM, the interviewees still acquire limited knowledge related to BIM. There are some drivers that potentially motivate them to employ BIM in their practices. These include client demands, innovation in traditional methods, speed in estimating costs, reduced time and costs, improvement in practices and self-awareness, efficiency in projects, and competition from other companies. The findings of this paper identify the potential drivers in encouraging Malaysian Quantity Surveyors to exploit BIM in their construction projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TO THE EDITOR: Kinner and colleagues described the high proportion of deaths among recently released prisoners in Australia...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A methodology to estimate the cost implications of design decisions by integrating cost as a design parameter at an early design stage is presented. The model is developed on a hierarchical basis, the manufacturing cost of aircraft fuselage panels being analysed in this paper. The manufacturing cost modelling is original and relies on a genetic-causal method where the drivers of each element of cost are identified relative to the process capability. The cost model is then extended to life cycle costing by computing the Direct Operating Cost as a function of acquisition cost and fuel burn, and coupled with a semi-empirical numerical analysis using Engineering Sciences Data Unit reference data to model the structural integrity of the fuselage shell with regard to material failure and various modes of buckling. The main finding of the paper is that the traditional minimum weight condition is a dated and sub-optimal approach to airframe structural design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

by John M. Barentine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"May 1991."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most parametric software cost estimation models used today evolved in the late 70's and early 80's. At that time, the dominant software development techniques being used were the early 'structured methods'. Since then, several new systems development paradigms and methods have emerged, one being Jackson Systems Development (JSD). As current cost estimating methods do not take account of these developments, their non-universality means they cannot provide adequate estimates of effort and hence cost. In order to address these shortcomings two new estimation methods have been developed for JSD projects. One of these methods JSD-FPA, is a top-down estimating method, based on the existing MKII function point method. The other method, JSD-COCOMO, is a sizing technique which sizes a project, in terms of lines of code, from the process structure diagrams and thus provides an input to the traditional COCOMO method.The JSD-FPA method allows JSD projects in both the real-time and scientific application areas to be costed, as well as the commercial information systems applications to which FPA is usually applied. The method is based upon a three-dimensional view of a system specification as opposed to the largely data-oriented view traditionally used by FPA. The method uses counts of various attributes of a JSD specification to develop a metric which provides an indication of the size of the system to be developed. This size metric is then transformed into an estimate of effort by calculating past project productivity and utilising this figure to predict the effort and hence cost of a future project. The effort estimates produced were validated by comparing them against the effort figures for six actual projects.The JSD-COCOMO method uses counts of the levels in a process structure chart as the input to an empirically derived model which transforms them into an estimate of delivered source code instructions.