900 resultados para computational statistics
Resumo:
Abstract not available
Resumo:
In this paper we proposed a new two-parameters lifetime distribution with increasing failure rate. The new distribution arises on a latent complementary risk problem base. The properties of the proposed distribution are discussed, including a formal proof of its probability density function and explicit algebraic formulae for its reliability and failure rate functions, quantiles and moments, including the mean and variance. A simple EM-type algorithm for iteratively computing maximum likelihood estimates is presented. The Fisher information matrix is derived analytically in order to obtaining the asymptotic covariance matrix. The methodology is illustrated on a real data set. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A bathtub-shaped failure rate function is very useful in survival analysis and reliability studies. The well-known lifetime distributions do not have this property. For the first time, we propose a location-scale regression model based on the logarithm of an extended Weibull distribution which has the ability to deal with bathtub-shaped failure rate functions. We use the method of maximum likelihood to estimate the model parameters and some inferential procedures are presented. We reanalyze a real data set under the new model and the log-modified Weibull regression model. We perform a model check based on martingale-type residuals and generated envelopes and the statistics AIC and BIC to select appropriate models. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A four parameter generalization of the Weibull distribution capable of modeling a bathtub-shaped hazard rate function is defined and studied. The beauty and importance of this distribution lies in its ability to model monotone as well as non-monotone failure rates, which are quite common in lifetime problems and reliability. The new distribution has a number of well-known lifetime special sub-models, such as the Weibull, extreme value, exponentiated Weibull, generalized Rayleigh and modified Weibull distributions, among others. We derive two infinite sum representations for its moments. The density of the order statistics is obtained. The method of maximum likelihood is used for estimating the model parameters. Also, the observed information matrix is obtained. Two applications are presented to illustrate the proposed distribution. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper proposes a regression model considering the modified Weibull distribution. This distribution can be used to model bathtub-shaped failure rate functions. Assuming censored data, we consider maximum likelihood and Jackknife estimators for the parameters of the model. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and we also present some ways to perform global influence. Besides, for different parameter settings, sample sizes and censoring percentages, various simulations are performed and the empirical distribution of the modified deviance residual is displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended for a martingale-type residual in log-modified Weibull regression models with censored data. Finally, we analyze a real data set under log-modified Weibull regression models. A diagnostic analysis and a model checking based on the modified deviance residual are performed to select appropriate models. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The zero-inflated negative binomial model is used to account for overdispersion detected in data that are initially analyzed under the zero-Inflated Poisson model A frequentist analysis a jackknife estimator and a non-parametric bootstrap for parameter estimation of zero-inflated negative binomial regression models are considered In addition an EM-type algorithm is developed for performing maximum likelihood estimation Then the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and some ways to perform global influence analysis are derived In order to study departures from the error assumption as well as the presence of outliers residual analysis based on the standardized Pearson residuals is discussed The relevance of the approach is illustrated with a real data set where It is shown that zero-inflated negative binomial regression models seems to fit the data better than the Poisson counterpart (C) 2010 Elsevier B V All rights reserved
Resumo:
In this study, regression models are evaluated for grouped survival data when the effect of censoring time is considered in the model and the regression structure is modeled through four link functions. The methodology for grouped survival data is based on life tables, and the times are grouped in k intervals so that ties are eliminated. Thus, the data modeling is performed by considering the discrete models of lifetime regression. The model parameters are estimated by using the maximum likelihood and jackknife methods. To detect influential observations in the proposed models, diagnostic measures based on case deletion, which are denominated global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to those measures, the local influence and the total influential estimate are also employed. Various simulation studies are performed and compared to the performance of the four link functions of the regression models for grouped survival data for different parameter settings, sample sizes and numbers of intervals. Finally, a data set is analyzed by using the proposed regression models. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Contém resumo
Analysis of a complete disjunctive table in which all the questions have the same set of categories.
Resumo:
Analyzing functional data often leads to finding common factors, for which functional principal component analysis proves to be a useful tool to summarize and characterize the random variation in a function space. The representation in terms of eigenfunctions is optimal in the sense of L-2 approximation. However, the eigenfunctions are not always directed towards an interesting and interpretable direction in the context of functional data and thus could obscure the underlying structure. To overcome such difficulty, an alternative to functional principal component analysis is proposed that produces directed components which may be more informative and easier to interpret. These structural components are similar to principal components, but are adapted to situations in which the domain of the function may be decomposed into disjoint intervals such that there is effectively independence between intervals and positive correlation within intervals. The approach is demonstrated with synthetic examples as well as real data. Properties for special cases are also studied.
Resumo:
This paper investigates a simple procedure to estimate robustly the mean of an asymmetric distribution. The procedure removes the observations which are larger or smaller than certain limits and takes the arithmetic mean of the remaining observations, the limits being determined with the help of a parametric model, e.g., the Gamma, the Weibull or the Lognormal distribution. The breakdown point, the influence function, the (asymptotic) variance, and the contamination bias of this estimator are explored and compared numerically with those of competing estimates.
Resumo:
Robust estimators for accelerated failure time models with asymmetric (or symmetric) error distribution and censored observations are proposed. It is assumed that the error model belongs to a log-location-scale family of distributions and that the mean response is the parameter of interest. Since scale is a main component of mean, scale is not treated as a nuisance parameter. A three steps procedure is proposed. In the first step, an initial high breakdown point S estimate is computed. In the second step, observations that are unlikely under the estimated model are rejected or down weighted. Finally, a weighted maximum likelihood estimate is computed. To define the estimates, functions of censored residuals are replaced by their estimated conditional expectation given that the response is larger than the observed censored value. The rejection rule in the second step is based on an adaptive cut-off that, asymptotically, does not reject any observation when the data are generat ed according to the model. Therefore, the final estimate attains full efficiency at the model, with respect to the maximum likelihood estimate, while maintaining the breakdown point of the initial estimator. Asymptotic results are provided. The new procedure is evaluated with the help of Monte Carlo simulations. Two examples with real data are discussed.