878 resultados para compressive load


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This Ultra High Performance Concrete research involves observing early-age creep and shrinkage under a compressive load throughout multiple thermal curing regimes. The goal was to mimic the conditions that would be expected of a precast/prestressing plant in the United States, where UHPC beams would be produced quickly to maximize a manufacturing plant’s output. The practice of steam curing green concrete to accelerate compressive strengths for early release of the prestressing tendons was utilized (140°F [60°C], 95% RH, 14 hrs), in addition to the full thermal treatment (195°F [90°C], 95% RH, 48 hrs) while the specimens were under compressive loading. Past experimental studies on creep and shrinkage characteristics of UHPC have only looked at applying a creep load after the thermal treatment had been administered to the specimens, or on ambient cured specimens. However, this research looked at mimicking current U.S. precast/prestressed plant procedures, and thus characterized the creep and shrinkage characteristics of UHPC as it is thermally treated under a compressive load. Michigan Tech has three moveable creep frames to accommodate two loading criteria per frame of 0.2f’ci and 0.6f’ci. Specimens were loaded in the creep frames and moved into a custom built curing chamber at different times, mimicking a precast plant producing several beams throughout the week and applying a thermal cure to all of the beams over the weekend. This thesis presents the effects of creep strain due to the varying curing regimes. An ambient cure regime was used as a baseline for the comparison against the varying thermal curing regimes. In all cases of thermally cured specimens, the compressive creep and shrinkage strains are accelerated to a maximum strain value, and remain consistent after the administration of the thermal cure. An average creep coefficient for specimens subjected to a thermal cure was found to be 1.12 and 0.78 for the high and low load levels, respectively. Precast/pressed plants can expect that simultaneously thermally curing UHPC elements that are produced throughout the week does not impact the post-cure creep coefficient.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

When an asphalt mixture is subjected to a destructive compressive load, it experiences a sequence of three deformation stages, as follows: the (1) primary, (2) secondary, and (3) tertiary stages. Most literature research focuses on plastic deformation in the primary and secondary stages, such as prediction of the flow number, which is in fact the initiation of the tertiary stage. However, little research effort has been reported on the mechanistic modeling of the damage that occurs in the tertiary stage. The main objective of this paper is to provide a mechanistic characterizing method for the damage modeling of asphalt mixtures in the tertiary stage. The preliminary study conducted by the writers illustrates that deformation during the tertiary flow of the asphalt mixtures is principally caused by the formation and propagation of cracks, which was signaled by the increase of the phase angle in the tertiary phase. The strain caused by the growth of cracks is the viscofracture strain, which can be obtained by conducting the strain decomposition of the measured total strain in the destructive compressive test. The viscofracture strain is employed in the research reported in this paper to mechanistically characterize the time-dependent fracture (viscofracture) of asphalt mixtures in compression. By using the dissipated pseudostrain energy-balance principle, the damage density and true stress are determined and both are demonstrated to increase with load cycles in the tertiary stage. The increased true stress yields extra viscoplastic strain, which is the reason why the permanent deformation is accelerated by the occurrence of cracks. To characterize the evolution of the viscofracture in the asphalt mixtures in compression, a pseudo J-integral Paris' law in terms of damage density is proposed and the material constants in the Paris' law are determined, which can be employed to predict the fracture of asphalt mixtures in compression. © 2013 American Society of Civil Engineers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Permanent deformation and fracture may develop simultaneously when an asphalt mixture is subjected to a compressive load. The objective of this research is to separate viscoplasticity and viscofracture from viscoelasticity so that the permanent deformation and fracture of the asphalt mixtures can be individually and accurately characterized without the influence of viscoelasticity. The undamaged properties of 16 asphalt mixtures that have two binder types, two air void contents, and two aging conditions are first obtained by conducting nondestructive creep tests and nondestructive dynamic modulus tests. Testing results are analyzed by using the linear viscoelastic theory in which the creep compliance and the relaxation modulus are modeled by the Prony model. The dynamic modulus and phase angle of the undamaged asphalt mixtures remained constant with the load cycles. The undamaged asphalt mixtures are then used to perform the destructive dynamic modulus tests in which the dynamic modulus and phase angle of the damaged asphalt mixtures vary with load cycles. This indicates plastic evolution and crack propagation. The growth of cracks is signaled principally by the increase of the phase angle, which occurs only in the tertiary stage. The measured total strain is successfully decomposed into elastic strain, viscoelastic strain, plastic strain, viscoplastic strain, and viscofracture strain by employing the pseudostrain concept and the extended elastic-viscoelastic correspondence principle. The separated viscoplastic strain uses a predictive model to characterize the permanent deformation. The separated viscofracture strain uses a fracture strain model to characterize the fracture of the asphalt mixtures in which the flow number is determined and a crack speed index is proposed. Comparisons of the 16 samples show that aged asphalt mixtures with a low air void content have a better performance, resisting permanent deformation and fracture. © 2012 American Society of Civil Engineers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study evaluated the fracture strength of teeth restored with bonded ceramic inlays and overlays compared to sound teeth. Thirty sound human maxillary premolars were assigned to 3 groups: 1- sound/unprepared (control); 2- inlays and 3- overlays. The inlay cavity design was Class II MOD preparation with an occlusal width of 1/2 of the intercuspal distance. The overlay cavity design was similar to that of the inlay group, except for buccal and palatal cusp coverage The inlay and overlay groups were restored with feldspathic porcelain bonded with adhesive cement. The specimens were subjected to a compressive load until fracture. Data were analyzed statistically by the Kruskal-Wallis test at 5% significance level. The fracture strength means (KN) were: Sound/unprepared group = 1.17, Inlay group= 1.17, and Overlay group = 1.14. There were no statistically significant differences (p>0.05) among the groups. For inlays and overlays, the predominant fracture mode involved fragments of one cusp (70% of simple fractures). The fracture strength of teeth restored with inlay and overlay ceramics with cusp coverage was similar to that of intact teeth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study evaluated the flexural strength (sf) and the diametral tensile strength (st) of light-cured composite resins, testing the hypothesis that there is a positive relation between these properties. Twenty specimens were fabricated for each material (Filtek Z250- 3M-Espe; AM- Amelogen, Ultradent; VE- Vit-l-escence, Ultradent; EX- Esthet-X, Dentsply/Caulk), following ISO 4049 and ANSI/ADA 27 specifications and the manufacturers’ instructions. For the st test, cylindrical shaped (4 mm x 6 mm) specimens (n = 10) were placed with their long axes perpendicular to the applied compressive load at a crosshead speed of 1.0 mm/min. The sf was measured using the 3-point bending test, in which bar shaped specimens (n = 10) were tested at a crosshead speed of 0.5 mm/min. Both tests were performed in a universal testing machine (EMIC 2000) recording the fracture load (N). Strength values (MPa) were calculated and statistically analyzed by ANOVA and Tukey (a = 0.05). The mean and standard deviation values (MPa) were Z250-45.06 ± 5.7; AM-35.61 ± 5.4; VE-34.45 ± 7.8; and EX-42.87 ± 6.6 for st; and Z250-126.52 ± 3.3; AM-87.75 ± 3.8; VE-104.66 ± 4.4; and EX-119.48 ± 2.1 for sf. EX and Z250 showed higher st and sf values than the other materials evaluated (p < 0.05), which followed a decreasing trend of mean values. The results confirmed the study hypothesis, showing a positive relation between the material properties examined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Statement of problem. Dental fractures can occur in endodontically treated teeth restored with posts. Purpose. The purpose of this study was to evaluate the in vitro fracture resistance of roots with glass-fiber and metal posts of different lengths. Material and methods. Sixty endodontically treated maxillary canines were embedded in acrylic resin, except for 4 mm of the cervical area, after removing the clinical crowns. The post spaces were opened with a cylindrical bur at low speed attached to a surveyor, resulting in preparations with lengths of 6 mm (group 6 mm), 8 mm (group 8 mm), or 10 mm (group 10 mm). Each group was divided into 2 subgroups according to the post material: cast post and core or glass-fiber post (n=30). The posts were luted with dual-polymerizing resin cement (Panavia F). Cast posts and cores of Co-Cr (Resilient Plus) crowns were made and cemented with zinc phosphate. Specimens were subjected to increasing compressive load (N) until fracture. Data were analyzed with 2-way ANOVA and the Tukey-Kramer test (alpha=.05). Results. The ANOVA analysis indicated significant differences (P<.05) among the groups, and the Tukey test revealed no significant difference among the metal posts of 6-mm length (26.5 N +/- 13.4), 8-mm length (25.2 N +/- 13.9), and 10-mm length (17.1 N +/- 5.2). Also, in the glass-fiber post group, there was no significant difference when posts of 8-mm length (13.4 N +/- 11.0) were compared with the 6-mm (6.9 N +/- 4.6) and 10-mm (31.7 N +/- 13.1) groups. The 10-mm-long post displayed superior fracture resistance, and the 6-mm-long post showed significantly lower mean values (P<.001). Conclusions. Within the limitations of this study, it was concluded that the glass-fiber post represents a viable alternative to the cast metal post, increasing the resistance to fracture of endodontically treated canines. (J Prosthet Dent 2009;101:183-188)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Limbal epithelial stem cells play a key role in the maintenance and regulation of the corneal surface. Damage or destruction of these cells results in vascularisation and corneal opacity. Subsequent limbal stem cell transplantation requires an ex vivo expansion step and preserving cells in an undifferentiated state remains vital. In this report we seek to control the phenotype of limbal epithelial stem cells by the novel application of compressed collagen substrates. We have characterised the mechanical and surface properties of conventional collagen gels using shear rheology and scanning electron microscopy. In doing so, we provide evidence to show that compressive load can improve the stiffness of collagen substrates. In addition Western blotting and immunohistochemistry display increased cytokeratin 3 (CK3) protein expression relating to limbal epithelial cell differentiation on stiff collagen substrates. Such gels with an elastic modulus of 2900 Pa supported a significantly higher number of cells than less stiff collagen gels (3 Pa). These findings have substantial influence in the development of ocular surface constructs or experimental models particularly in the fields of stem cell research, tissue engineering and regenerative medicine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: The aim of this study was to evaluate the fracture strength and failure mode of flared bovine roots restored with different intraradicular posts. Material and Methods: Fifty bovine incisors with similar dimensions were selected and their roots were flared until 1.0 mm of dentin wall remained. Next, the roots were allocated into five groups (n=10): GI-cast metal post-and-core; GII-fiber posts plus accessory fiber posts; GIII-direct anatomic post; GIV-indirect anatomic post and GV-control (specimens without intraradicular post). A polyether impression material was used to simulate the periodontal ligament. After periodontal ligament simulation, the specimens were subjected to a compressive load at a crosshead speed of 0.5 mm/min in a servo-hydraulic testing machine (MTS 810) applied at 135 to the long axis of the tooth until failure. The data (N) were subjected to ANOVA and Tukey's post-hoc test (alpha=0.05). Results: GI and GIV presented higher fracture strength (p<0.05) than GII. GIII presented intermediate values without statistically significant differences (p>0.05) from GI, GII and GIV. Control specimens (GV) produced the lowest fracture strength mean values (p<0.05). Despite obtaining the highest mean value, GI presented 100% of unfavorable failures. GII presented 20% of unfavorable failures. GIII, GIV and GV presented only favorable failures. Conclusions: Although further in vitro and in vivo studies are necessary, the results of this study showed that the use of direct and indirect anatomic posts in flared roots could be an alternative to cast metal post-and-core.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: To compare the fracture resistance of bovine teeth after intracoronal bleaching with sodium percarbonate (SPC) or sodium perborate (SP) mixed with water or 20% hydrogen peroxide (HP). Materials and methods: Fifty extracted bovine teeth were divided into four experimental groups (G1G4) and one control (n = 10) after endodontic treatment. Following root canal obturation, a glass ionomer barrier was placed at the cementoenamel junction. After that, the pulp chambers were filled with: G1 SP with water; G2 SP with 20% HP; G3 SPC with water; and G4 SPC with 20% HP. No bleaching agent was used in the control group. Coronal access cavities were sealed with glass ionomer and specimens were immersed in artificial saliva. The bleaching agents were replaced after 7 days, and teeth were kept in artificial saliva for an additional 7 days, after which the pastes were removed and the coronal access cavities were restored with glass ionomer. Crowns were subjected to compressive load at a cross head speed of 0.5 mm min-1 applied at 135 degrees to the long axis of the root by an EMIC DL2000 testing machine, until coronal fracture. Data were statistically analysed by anova and Tukey test. Results: No differences in fracture resistance were observed between the experimental groups (P > 0.05). However, all experimental groups presented lower fracture resistance than the control group (P < 0.05). Conclusion: SPC and SP led to equal reduction on fracture resistance of dental crowns, regardless of being mixed with water or 20% HP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: This study evaluated, in vitro, the fracture resistance of human non-vital teeth restored with different reconstruction protocols. Material and methods: Forty human anterior roots of similar shape and dimensions were assigned to four groups (n=10), according to the root reconstruction protocol: Group I (control): non-weakened roots with glass fiber post; Group II: roots with composite resin by incremental technique and glass fiber post; Group III: roots with accessory glass fiber posts and glass fiber post; and Group IV: roots with anatomic glass fiber post technique. Following post cementation and core reconstruction, the roots were embedded in chemically activated acrylic resin and submitted to fracture resistance testing, with a compressive load at an angle of 45 degrees in relation to the long axis of the root at a speed of 0.5 mm/min until fracture. All data were statistically analyzed with bilateral Dunnett's test (alpha=0.05). Results: Group I presented higher mean values of fracture resistance when compared with the three experimental groups, which, in turn, presented similar resistance to fracture among each other. None of the techniques of root reconstruction with intraradicular posts improved root strength, and the incremental technique was suggested as being the most recommendable, since the type of fracture that occurred allowed the remaining dental structure to be repaired. Conclusion: The results of this in vitro study suggest that the healthy remaining radicular dentin is more important to increase fracture resistance than the root reconstruction protocol.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim To evaluate, using an experimental immature tooth model, the fracture resistance of bovine incisors submitted to different reinforcement treatments with mineral trioxide aggregate (MTA).Methodology An immature tooth model was created by sectioning the coronal and apical portions of 40 bovine incisors 8 mm above and 12 mm below the cementoenamel junction. The root canals were irrigated with 1.0% sodium hypochlorite. They were enlarged both coronally and apically using number 703 carbide burs (ISO: 500-104-168-007-021) and their internal diameter was standardized to 2.1 mm. The specimens were assigned to four groups (n = 10): GI-control (without filling); GII-apical MTA plug + filling with gutta-percha and endodontic sealer; GIII-filling with MTA; GIV-apical MTA plug + filling with MTA + metallic post (Reforpost I). A polyether impression material was used to simulate the periodontal ligament. The specimens were submitted to a compressive load at a crosshead speed of 0.5 mm min(-1) in a servo-hydraulic universal testing machine (MTS 810) applied at 45 degrees to the long axis of the tooth until failure. Data were submitted to statistical analysis by the Kruskal-Wallis test at 5% significance level.Results GIV presented the highest fracture resistance (32.7N) and differed significantly from the other groups (P < 0.05). No statistically difference was found between GII (16.6N) and GIII (23.4N) (P > 0.05). GIII had a significantly higher fracture resistance than GI (P < 0.05).Conclusions the use of MTA + metallic post as an intra-radicular reinforcement treatment increased the resistance to fracture of weakened bovine teeth in an experimental immature tooth model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tendon composition changes according to differentiation, mechanical load, and aging. In this study, we attempted to identify, localize, and quantify type VI collagen in bovine tendons. Type VI collagen was identified by the electrophoretic behavior of the alpha chains and Western blotting, and by rotary shadowing. Type VI collagen was extracted from powdered tendon with three sequential 24-h extractions with 4 M guanidine-HCl. The amount of type VI collagen was determined by enzyme-linked immunosorbent assay for purely tensional areas and for the compressive fibrocartilage regions of the deep flexor tendon of the digits, for the corresponding fetal and calf tendons, and for the extensor digital tendon. The distal fibrocartilaginous region of the adult tendon was richer in type VI collagen than the tensional area, reaching as much as 3.3 mg/g (0.33%) of the wet weight. Calf tendons showed an accumulation of type VI at the fibrocartilage site. Immunocytochemistry demonstrated that type VI collagen was evenly distributed in the tensional areas of tendons but was highly concentrated around the fibrochondrocytes in the fibrocartilages. The results demonstrate that tendons are variable with regard to the presence and distribution of type VI collagen. The early accumulation of type VI collagen in the region of calf tendon that will become fibrocartilage in the adult suggests that it is a good marker of fibrocartilage differentiation. Furthermore, the distribution of type VI collagen in tendon fibrocartilage indicates that it organizes the pericellular environment and may represent a survival factor for these cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In metallic restorations, the polymerization of dual-curing resin cements depends exclusively on chemical activation. The effect of the lack of photoactivation on the strength of these cements has been rarely studied. This study evaluated the influence of activation modes on the diametral tensile strength (DTS) of dual-curing resin cements. Base and catalyst pastes of Panavia F, Variolink II, Scotchbond Resin Cement, Rely X and Enforce were mixed and inserted into cylindrical metal moulds (4 x 2 mm). Cements were either: 1) not exposed to light (chemical activation = self-cured groups) or 2) photoactivated through mylar strips (chemical and photo-activation = dual-cured groups) (n = 10). After a 24 h storage in 37 masculineC distilled water, specimens were subjected to compressive load in a testing machine. A self-curing resin cement (Cement-It) and a zinc phosphate cement served as controls. Comparative analyses were performed: 1) between the activation modes for each dual-curing resin cement, using Students t test; 2) among the self-cured groups of the dual-curing resin cements and the control groups, using one-way ANOVA and Tukeys test (alpha = 0.05). The dual-cured groups of Scotchbond Resin Cement (53.3 MPa), Variolink II (48.4 MPa) and Rely X (51.6 MPa) showed higher DTS than that of self-cured groups (44.6, 40.4 and 44.5 MPa respectively) (p < 0.05). For Enforce (48.5 and 47.8 MPa) and Panavia F (44.0 and 43.3 MPa), no significant difference was found between the activation modes (p > 0.05). The self-cured groups of all the dual-curing resin cements presented statistically the same DTS as that of Cement-It (44.1 MPa) (p > 0.05), and higher DTS than that of zinc phosphate (4.2 MPa). Scotchbond Resin Cement, Variolink II and Rely X depended on photoactivation to achieve maximum DTS. In the absence of light, all the dual-curing resin cements presented higher DTS than that of zinc phosphate and statistically the same as that of Cement-It (p > 0.05).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aging is associated with decline in muscle mass and strength and reduced bone density. Age-related bone loss is a primary factor in osteoporosis and all individuals are potential candidates for osteoporosis because bone loss with aging occurs in men and women, but less studied in men. To examine the appropriateness of hindlimb elevation, by tail suspension as a model for diminished mechanical loading, and to determine the influence of age on bone responsiveness to skeletal unloading, we use dual X ray absorptiometry (DXA) and digital radiographic images to analyze the response of the femur from mature rats to biomechanical loads. Femurs from male Wistar rats (9-mo-old) were scanned using DXA and DIGORA and measures obtained in ephipyseal and diaphyseal regions of interest. The mechanical testing was divided into compression load to fracture the head and a three-point bending load to fracture the femur middiaphysis. In femoral epiphysis from hindlimb unload (HU), animals presented significant differences between mineral bone content and density assessed by DXA. Detailed regions of femoral epiphysis (head, throcanteric fossa, throcanter and metaphysis) presented significant lower values from radiographic density. Only compressive load necessary to fracture the femoral head neck was also significantly diminished in HU animals. Disuse induced, as in elderly patients, deterioration of the trabecular bone architecture with critical effect on bone fragility. Rats with 21 days of hindlimb unloading can simulate disuse, suggesting that certain sub-regions of their aging bones are more susceptible to fracture, while other, i.e. diaphyses, are not.