995 resultados para colonic transit time
Resumo:
Manometric and pharmacological tests have shown that motor abnormalities may occur in the non-dilated colons of chagasic patients. In order to investigate the presence of abnormalities of colonic function in constipated patients with Chagas disease (ChC) without megaesophagus or megacolon, studies of total and segmental colonic transit time with radiopaque markers were performed on 15 ChC patients, 27 healthy volunteers and 17 patients with idiopathic constipation (IC). The values obtained for the control group were similar to those reported in the literature (total colonic time: 34.1 ± 15.6 h; right colon: 9.9 ± 7.3 h; left colon: 10.8 ± 10 h, and rectosigmoid: 12.6 ± 9.9 h). Colonic transit time data permitted us to divide both IC and ChC patients into groups with normal transit and those with slow colonic transit. Colonic inertia was detected in 41% of IC patients and in 13% of ChC patients; left colon isolated stasis (hindgut dysfunction) was detected in 12% of IC patients and 7% of ChC patients, and outlet obstruction was detected in 6% of IC patients and 7% of ChC patients. There were no significant differences in total or segmental colonic transit times between slow transit IC and slow transit ChC patients. In conclusion, an impairment of colonic motility was detected in about 30% of constipated patients with Chagas disease without megaesophagus or megacolon. This subgroup of patients presented no distinctive clinical feature or pattern of colonic dysmotility when compared to patients with slow transit idiopathic constipation.
Resumo:
The objective of the present study was to evaluate associations between fiber intake, colonic transit time and stool frequency. Thirty-eight patients aged 4 to 14 years were submitted to alimentary evaluation and to measurement of colonic transit time. The median fiber intake of the total sample was age + 10.3 g/day. Only 18.4% of the subjects presented a daily dietary fiber intake below the levels recommended by the American Health Foundation. In this group, the median left colonic transit time was shorter than in the group with higher dietary fiber intake (11 vs 17 h, P = 0.067). The correlation between stool frequency and colonic transit time was negative and weak for left colon (r = -0.3, P = 0.04), and negative and moderate for rectosigmoid and total colon (r = -0.5, P<0.001 and r = -0.5, P<0.001, respectively). The stool frequency was lower in the group with slow transit time (0.8 vs 2.3 per week, P = 0.014). In conclusion, most patients with chronic functional constipation had adequate dietary fiber intake. The negative correlation between stool frequency and colonic transit time increased progressively from proximal segments to distal segments of the colon. Patients with normal and prolonged colonic transit time differ in terms of stool frequency.
Resumo:
BACKGROUND: Constipation is a significant side effect of opioid therapy. We have previously demonstrated that naloxone-3-glucuronide (NX3G) antagonizes the motility-lowering-effect of morphine in the rat colon. AIM: To find out whether oral NX3G is able to reduce the morphine-induced delay in colonic transit time (CTT) without being absorbed and influencing the analgesic effect. METHODS: Fifteen male volunteers were included. Pharmacokinetics: after oral administration of 0.16 mg/kg NX3G, blood samples were collected over a 6-h period. Pharmacodynamics: NX3G or placebo was then given at the start time and every 4 h thereafter. Morphine (0.05 mg/kg) or placebo was injected s.c. 2 h after starting and thereafter every 6 h for 24 h. CTT was measured over a 48-h period by scintigraphy. Pressure pain threshold tests were performed. RESULTS: Neither NX3G nor naloxone was detected in the venous blood. The slowest transit time was observed during the morphine phase, which was significantly different from morphine with NX3G and placebo. The pain perception was not significantly influenced by NX3G. CONCLUSIONS: Orally administered NX3G is able to reverse the morphine-induced delay of CTT in humans without being detected in peripheral blood samples. Therefore, NX3G may improve symptoms of constipation in-patients using opioid medication without affecting opioid-analgesic effects.
Resumo:
Abstract Electrical stimulation is a new way to treat digestive disorders such as constipation. Colonic propulsive activity can be triggered by battery operated devices. This study aimed to demonstrate the effect of direct electrical colonic stimulation on mean transit time in a chronic porcine model. The impact of stimulation and implanted material on the colonic wall was also assessed. Three pairs of electrodes were implanted into the caecal wall of 12 anaesthetized pigs. Reference colonic transit time was determined by radiopaque markers for each pig before implantation. It was repeated 4 weeks after implantation with sham stimulation and 5 weeks after implantation with electrical stimulation. Aboral sequential trains of 1-ms pulse width (10 V; 120 Hz) were applied twice daily for 6 days, using an external battery operated stimulator. For each course of markers, a mean value was computed from transit times obtained from individual pig. Microscopic examination of the caecum was routinely performed after animal sacrifice. A reduction of mean transit time was observed after electrical stimulation (19 +/- 13 h; mean +/- SD) when compared to reference (34 +/- 7 h; P = 0.045) and mean transit time after sham stimulation (36 +/- 9 h; P = 0.035). Histological examination revealed minimal chronic inflammation around the electrodes. Colonic transit time measured in a chronic porcine model is reduced by direct sequential electrical stimulation. Minimal tissue lesion is elicited by stimulation or implanted material. Electrical colonic stimulation could be a promising approach to treat specific disorders of the large bowel.
Resumo:
Rapport de synthèse : Introduction : La stimulation électrique représente une nouvelle modalité thérapeutique de divers troubles digestifs. Dans la constipation par exemple, le péristaltisme colique peut être activé par un système électrique alimenté par une batterie. La présente étude a pour but de démontrer l'impact d'une stimulation électrique directe du côlon sur le temps de transit moyen, en utilisant un modèle expérimental chronique porcin. L'effet de la stimulation et du matériel implanté dans la paroi colique est également évalué. Matériel et méthode : Trois paires d'électrodes ont été implantées dans la paroi cæcale de douze porcs anesthésiés. Avant implantation, un temps de transit colique de référence a été déterminé chez chaque animal par utilisation de marqueurs radio-opaques. Cette évaluation a été répétée quatre semaines après implantation, sous stimulation factice, et cinq semaines après implantation, sous stimulation électrique. Des trains séquentiels et aboraux de stimulation (10 V ; 120 Hz ; 1 ms) ont été appliqués quotidiennement durant six jours, en utilisant un stimulateur externe fonctionnant sur batteries. Pour chaque série de marqueurs, une valeur moyenne a été calculée à partir du temps de transit individuel des porcs. Un examen microscopique du cæcum a été systématiquement entrepris après sacrifice des animaux. Résultats : Une réduction du temps de transit moyen a été observée après stimulation électrique (19h ± 13 ; moyenne ± DS), comparativement au temps de référence (34h ± 7 ; p=0.045) et au temps de transit après stimulation factice (36h ± 9 ; p=0.035). L'examen histologique a montré la présence d'une inflammation chronique minime, autour des électrodes. Conclusion : Le temps de transit colique porcin peut être réduit, en conditions expérimentales chroniques, par une stimulation électrique directe et séquentielle de l'intestin. Des lésions tissulaires limitées ont été occasionnées par la stimulation ou le matériel implanté. La stimulation électrique colique représente certainement une approche prometteuse du traitement de certains troubles spécifiques du côlon, avant tout fonctionnels.
Resumo:
Rapport de synthèse : Introduction : La stimulation électrique représente une nouvelle modalité thérapeutique de divers troubles digestifs. Dans la constipation par exemple, le péristaltisme colique peut être activé par un système électrique alimenté par une batterie. La présente étude a pour but de démontrer l'impact d'une stimulation électrique directe du côlon sur le temps de transit moyen, en utilisant un modèle expérimental chronique porcin. L'effet de la stimulation et du matériel implanté dans la paroi colique est également évalué. Matériel et méthode : Trois paires d'électrodes ont été implantées dans la paroi cæcale de douze porcs anesthésiés. Avant implantation, un temps de transit colique de référence a été déterminé chez chaque animal par utilisation de marqueurs radio-opaques. Cette évaluation a été répétée quatre semaines après implantation, sous stimulation factice, et cinq semaines après implantation, sous stimulation électrique. Des trains séquentiels et aboraux de stimulation (10 V ; 120 Hz ; 1 ms) ont été appliqués quotidiennement durant six jours, en utilisant un stimulateur externe fonctionnant sur batteries. Pour chaque série de marqueurs, une valeur moyenne a été calculée à partir du temps de transit individuel des porcs. Un examen microscopique du cæcum a été systématiquement entrepris après sacrifice des animaux. Résultats : Une réduction du temps de transit moyen a été observée après stimulation électrique (19h ± 13 ; moyenne ± DS), comparativement au temps de référence (34h ± 7 ; p=0.045) et au temps de transit après stimulation factice (36h ± 9 ; p=0.035). L'examen histologique a montré la présence d'une inflammation chronique minime, autour des électrodes. Conclusion : Le temps de transit colique porcin peut être réduit, en conditions expérimentales chroniques, par une stimulation électrique directe et séquentielle de l'intestin. Des lésions tissulaires limitées ont été occasionnées par la stimulation ou le matériel implanté. La stimulation électrique colique représente certainement une approche prometteuse du traitement de certains troubles spécifiques du côlon, avant tout fonctionnels.
Resumo:
The convection-dispersion model and its extended form have been used to describe solute disposition in organs and to predict hepatic availabilities. A range of empirical transit-time density functions has also been used for a similar purpose. The use of the dispersion model with mixed boundary conditions and transit-time density functions has been queried recently by Hisaka and Sugiyanaa in this journal. We suggest that, consistent with soil science and chemical engineering literature, the mixed boundary conditions are appropriate providing concentrations are defined in terms of flux to ensure continuity at the boundaries and mass balance. It is suggested that the use of the inverse Gaussian or other functions as empirical transit-time densities is independent of any boundary condition consideration. The mixed boundary condition solutions of the convection-dispersion model are the easiest to use when linear kinetics applies. In contrast, the closed conditions are easier to apply in a numerical analysis of nonlinear disposition of solutes in organs. We therefore argue that the use of hepatic elimination models should be based on pragmatic considerations, giving emphasis to using the simplest or easiest solution that will give a sufficiently accurate prediction of hepatic pharmacokinetics for a particular application. (C) 2000 Wiley-Liss Inc. and the American Pharmaceutical Association J Pharm Sci 89:1579-1586, 2000.
Resumo:
Pulse wave velocity (PWV) is a known parameter that is related to arterial distensibility. However, its potential is hampered by the absence of appropriate techniques to estimate it noninvasively. PWV can be used as an assessment of increased arterial stiffness that is linked to systolic hypertension, excess cardiovascular morbidity and mortality.(1,2)
Resumo:
The dispersion model with mixed boundary conditions uses a single parameter, the dispersion number, to describe the hepatic elimination of xenobiotics and endogenous substances. An implicit a priori assumption of the model is that the transit time density of intravascular indicators is approximated by an inverse Gaussian distribution. This approximation is limited in that the model poorly describes the tail part of the hepatic outflow curves of vascular indicators. A sum of two inverse Gaussian functions is proposed as ail alternative, more flexible empirical model for transit time densities of vascular references. This model suggests that a more accurate description of the tail portion of vascular reference curves yields an elimination rate constant (or intrinsic clearance) which is 40% less than predicted by the dispersion model with mixed boundary conditions. The results emphasize the need to accurately describe outflow curves in using them as a basis for determining pharmacokinetic parameters using hepatic elimination models. (C) 1997 Society for Mathematical Biology.
Resumo:
The objective of the present study was to validate the transit-time technique for long-term measurements of iliac and renal blood flow in rats. Flow measured with ultrasonic probes was confirmed ex vivo using excised arteries perfused at varying flow rates. An implanted 1-mm probe reproduced with accuracy different patterns of flow relative to pressure in freely moving rats and accurately quantitated the resting iliac flow value (on average 10.43 ± 0.99 ml/min or 2.78 ± 0.3 ml min-1 100 g body weight-1). The measurements were stable over an experimental period of one week but were affected by probe size (resting flows were underestimated by 57% with a 2-mm probe when compared with a 1-mm probe) and by anesthesia (in the same rats, iliac flow was reduced by 50-60% when compared to the conscious state). Instantaneous changes of iliac and renal flow during exercise and recovery were accurately measured by the transit-time technique. Iliac flow increased instantaneously at the beginning of mild exercise (from 12.03 ± 1.06 to 25.55 ± 3.89 ml/min at 15 s) and showed a smaller increase when exercise intensity increased further, reaching a plateau of 38.43 ± 1.92 ml/min at the 4th min of moderate exercise intensity. In contrast, exercise-induced reduction of renal flow was smaller and slower, with 18% and 25% decreases at mild and moderate exercise intensities. Our data indicate that transit-time flowmetry is a reliable method for long-term and continuous measurements of regional blood flow at rest and can be used to quantitate the dynamic flow changes that characterize exercise and recovery
Resumo:
The study of diet and physiological peculiarities of the digestive system of neotropical deer is not well known and the literature shows inconsistencies. To better understand the digestive system of these mammals the difference in the gastro-intestinal transit time of four species of neotropical deer (Mazama americana, Mazama gouazoubira, Mazama nana, Blastocerus dichotomus), kept ill captivity, was evaluated. Four plants (Neonotonia wightii, Morus albans, Medicago sativa, Leucaena leucocephala) were utilized and two variables were measured, mean time of the beginning of the elimination (BE) and mean time of permanence (TP). The results obtained for BE indicated similarity among the deer species, with significant differences between M. gouazoubira (mean = 13.62 hr) and M. Americana (mean = 19.25 hr). For the plants, the BE was faster with N. wightii and L. leucocephala, and slower for M. sativa. The TP results for B. dichotomus showed longer time when compared to the other species, whereas M. gouazoubira had a lower permanence. Overall, N. wightii had the highest retention time in the digestive tract of all the deer species studied. Associated with this observation, N. wightii had the highest quantity of plant fiber of the plants tested. In a similar fashion M. sativa showed the lowest TP in the digestive tract of the deer and had the lowest quantity of acid detergent fiber. The data from this study showed that, within species, the shape of the excretion curve of the plants was similar when the animals consumed N. wightii or M. sativa. Blastocerus dichotomus and M. gouazoubira had the highest and the lowest gastro-intestinal transit time, respectively. This suggests that these species characterize different abilities to digest high fiber food, and consequently, represent the two extremities in the morphophysiological adaptation within the deer species evaluated. This information is vital because it is important to know the digestive physiology to define the diet of captive animals, particularly regarding the quantity and quality of fiber. Zoo Biol 25:47-57, 2006. (C) 2005 Wiley-Liss, Inc.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Sibutramine is a drug globally used for the treatment of obesity. The aim of this study was to investigate male reproductive disorders caused by sibutramine in adult rats. Wistar rats were treated for 28 consecutive days (gavage) with 10 mg/kg of sibutramine. Control animals received only vehicle (dimethylsulfoxide and saline). The rats were sacrificed for evaluation of body and reproductive organ weights, sperm parameters, hormone levels (luteinizing hormone, follicle-stimulating hormone, and testosterone), testicular and epididymal histopathology, sexual behavior, fertility and in vitro contractility of the epididymal duct. Sibutramine decreased (P < .05) weights of the epididymis and ventral prostate, but not of other reproductive organs. The sperm number and transit time in the epididymal cauda were decreased (P < .001), but the daily sperm production was not altered. Moreover, morphology and sperm motility, histopathology of the testes and epididymis, sexual behavior, fertility, and serum hormone levels were not altered by the treatment. Sibutramine increased the potency of norepinephrine and, per se, increased the mechanical activity of the epididymal duct in vitro. Thus, although sibutramine in these experimental conditions did not interfere with the reproductive process of rats, it provoked acceleration of the sperm transit time and a decrease in the sperm reserves in the epididymal cauda. This alteration is probably related to the sympathomimetic effect of this drug, as shown by the in vitro assays. In humans, use of this drug might present a threat for male fertility because sperm reserves in men are naturally lower than those in rats.
Resumo:
Guanethidine, a chemical that selectively abolishes peripheral noradrenergic nerves, was used to investigate the role of sympathetic innervation in the maintenance of epididymal sperm quantity and quality. Four groups of 10 adult male rats each were treated daily for 21 days, by i.p. injections, with either 0 (saline vehicle), 6.25, 12.5, or 25 mg/kg guanethidine. Norepinephrine content was reduced to undetectable levels in the cauda epididymidis in all guanethidine groups after 3 wk of treatment and was reduced to 7.4% of the control values after 1 wk of 6.25 mg/kg treatment. While body weight gain was significantly decreased at 12.5 and 25 mg/kg compared to that in controls, there was a significant increase in the weights of the seminal vesicles/coagulating glands in all treated groups. The number of homogenization-resistant spermatids per testis and the daily sperm production per testis remained unchanged. The weight of the epididymis was significantly increased at 6.25 and 12.5 mg/kg. Moreover, the number of cauda epididymal sperm and the transit time were increased significantly at 6.25 mg/kg (10.2 days) compared to values in the control cauda (6.3 days). Neither serum testosterone levels nor LH was affected in a dosage-related manner. There were no effects of guanethidine treatment on cauda epididymal sperm motility or morphology. A quantitative analysis of detergent-extracted cauda epididymal sperm proteins by SDS-PAGE revealed no differences, but there were diminutions in seven proteins in homogenates of caput/ corpus tissue. Histologic analysis of testis and epididymis sections revealed no differences between control and denervated animals. In a subsequent experiment the lowest effective dosage (6.25 mg/kg) was given to rats for 1 wk, and an increased number of cauda epididymal sperm and a delay in sperm transit were observed. Our results indicate that low-dosage guanethidine exposure denervates the epididymis within 1 wk, thereby delaying epididymal transit; however, neither 1- nor 3-wk exposure produces qualitative changes in the sperm.
Resumo:
The epididymal sperm transit time seems to have an important role in the process of sperm maturation, and it seems that alterations to the transit can harm the process. The aim of the present work was to evaluate the influence of altered sperm transit time through the epididymis on sperm parameters and fertility of rats, as well as the role of testosterone in the alterations. Sprague-Dawley adult male rats were randomly assigned to four different groups and were treated for 12 days: (i) 10 mu g/rat/day DES, to accelerate the transit; (ii) 6.25 mg/kg/day guanethidine sulphate, to delay the transit; (iii) same treatment as group 1, plus androgen supplementation; (iv) control animals received the vehicles. Guanethidine treatment delayed the sperm transit time through the epididymal cauda, provoking increased sperm reserves in this region. Animals exposed to DES showed an acceleration of sperm transit time in the epididymis, and consequently decreased sperm density in both epididymal regions, the caput-corpus and cauda, and diminished sperm motility. In both cases sperm production was not altered. Testosterone supplementation was able to restore the transit time to values close to normality, as they were higher than in the control rats. The same occurred in relation to sperm motility. Rats exposed to DES presented lower fertility after in utero artificial insemination using sperm collected from the proximal cauda epididymis. Therefore, it was concluded that the acceleration of rat sperm transit time appeared to harm normal sperm maturation, thus decreasing sperm quality and fertility capacity, in an androgen-dependent way.