704 resultados para cloud computing, hypervisor, virtualizzazione, live migration, infrastructure as a service
Resumo:
Uno dei temi più discussi ed interessanti nel mondo dell’informatica al giorno d’oggi è sicuramente il Cloud Computing. Nuove organizzazioni che offrono servizi di questo tipo stanno nascendo ovunque e molte aziende oggi desiderano imparare ad utilizzarli, migrando i loro centri di dati e le loro applicazioni nel Cloud. Ciò sta avvenendo anche grazie alla spinta sempre più forte che stanno imprimendo le grandi compagnie nella comunità informatica: Google, Amazon, Microsoft, Apple e tante altre ancora parlano sempre più frequentemente di Cloud Computing e si stanno a loro volta ristrutturando profondamente per poter offrire servizi Cloud adeguandosi così a questo grande cambiamento che sta avvenendo nel settore dell’informatica. Tuttavia il grande movimento di energie, capitali, investimenti ed interesse che l’avvento del Cloud Computing sta causando non aiuta a comprendere in realtà che cosa esso sia, al punto tale che oggi non ne esiste ancora una definizione univoca e condivisa. La grande pressione inoltre che esso subisce da parte del mondo del mercato fa sì che molte delle sue più peculiari caratteristiche, dal punto di vista dell’ingegneria del software, vengano nascoste e soverchiate da altre sue proprietà, architetturalmente meno importanti, ma con un più grande impatto sul pubblico di potenziali clienti. L’obbiettivo che ci poniamo con questa tesi è quindi quello di esplorare il nascente mondo del Cloud Computing, cercando di comprenderne a fondo le principali caratteristiche architetturali e focalizzando l’attenzione in particolare sullo sviluppo di applicazioni in ambiente Cloud, processo che sotto alcuni aspetti si differenzia molto dallo sviluppo orientato ad ambienti più classici. La tesi è così strutturata: nel primo capitolo verrà fornita una panoramica sul Cloud Computing nella quale saranno date anche le prime definizioni e verranno esposti tutti i temi fondamentali sviluppati nei capitoli successivi. Il secondo capitolo costituisce un approfondimento su un argomento specifico, quello dei Cloud Operating System, componenti fondamentali che permettono di trasformare una qualunque infrastruttura informatica in un’infrastruttura Cloud. Essi verranno presentati anche per mezzo di molte analogie con i classici sistemi operativi desktop. Con il terzo capitolo ci si addentra più a fondo nel cuore del Cloud Computing, studiandone il livello chiamato Infrastructure as a Service tramite un esempio concreto di Cloud provider: Amazon, che fornisce i suoi servizi nel progetto Amazon Web Services. A questo punto, più volte nel corso della trattazione di vari temi saremo stati costretti ad affrontare le problematiche relative alla gestione di enormi moli di dati, che spesso sono il punto centrale di molte applicazioni Cloud. Ci è parso quindi importante approfondire questo argomento in un capitolo appositamente dedicato, il quarto, supportando anche in questo caso la trattazione teorica con un esempio concreto: BigTable, il sistema di Google per la gestione della memorizzazione di grandi quantità di dati. Dopo questo intermezzo, la trattazione procede risalendo lungo i livelli dell’architettura Cloud, ricalcando anche quella che è stata l’evoluzione temporale del Cloud Computing: nel quinto capitolo, dal livello Infrastructure as a Service si passa quindi a quello Platform as a Service, tramite lo studio dei servizi offerti da Google Cloud Platform. Il sesto capitolo costituisce invece il punto centrale della tesi, quello che ne soddisfa l’obbiettivo principale: esso contiene infatti uno studio approfondito sullo sviluppo di applicazioni orientate all’ambiente Cloud. Infine, il settimo capitolo si pone come un ponte verso possibili sviluppi futuri, analizzando quali sono i limiti principali delle tecnologie, dei modelli e dei linguaggi che oggi supportano il Cloud Computing. In esso viene proposto come possibile soluzione il modello ad attori; inoltre viene anche presentato il framework Orleans, che Microsoft sta sviluppando negli ultimi anni con lo scopo appunto di supportare lo sviluppo di applicazioni in ambiente Cloud.
Resumo:
The potential of cloud computing is gaining significant interest in Modeling & Simulation (M&S). The underlying concept of using computing power as a utility is very attractive to users that can access state-of-the-art hardware and software without capital investment. Moreover, the cloud computing characteristics of rapid elasticity and the ability to scale up or down according to workload make it very attractive to numerous applications including M&S. Research and development work typically focuses on the implementation of cloud-based systems supporting M&S as a Service (MSaaS). Such systems are typically composed of a supply chain of technology services. How is the payment collected from the end-user and distributed to the stakeholders in the supply chain? We discuss the business aspects of developing a cloud platform for various M&S applications. Business models from the perspectives of the stakeholders involved in providing and using MSaaS and cloud computing are investigated and presented.
Resumo:
Questo documento affronta le novità ed i vantaggi introdotti nel mondo delle reti di telecomunicazioni dai paradigmi di Software Defined Networking e Network Functions Virtualization, affrontandone prima gli aspetti teorici, per poi applicarne i concetti nella pratica, tramite casi di studio gradualmente più complessi. Tali innovazioni rappresentano un'evoluzione dell'architettura delle reti predisposte alla presenza di più utenti connessi alle risorse da esse offerte, trovando quindi applicazione soprattutto nell'emergente ambiente di Cloud Computing e realizzando in questo modo reti altamente dinamiche e programmabili, tramite la virtualizzazione dei servizi di rete richiesti per l'ottimizzazione dell'utilizzo di risorse. Motivo di tale lavoro è la ricerca di soluzioni ai problemi di staticità e dipendenza, dai fornitori dei nodi intermedi, della rete Internet, i maggiori ostacoli per lo sviluppo delle architetture Cloud. L'obiettivo principale dello studio presentato in questo documento è quello di valutare l'effettiva convenienza dell'applicazione di tali paradigmi nella creazione di reti, controllando in questo modo che le promesse di aumento di autonomia e dinamismo vengano rispettate. Tale scopo viene perseguito attraverso l'implementazione di entrambi i paradigmi SDN e NFV nelle sperimentazioni effettuate sulle reti di livello L2 ed L3 del modello OSI. Il risultato ottenuto da tali casi di studio è infine un'interessante conferma dei vantaggi presentati durante lo studio teorico delle innovazioni in analisi, rendendo esse una possibile soluzione futura alle problematiche attuali delle reti.
Resumo:
Despite the compelling case for moving towards cloud computing, the upstream oil & gas industry faces several technical challenges—most notably, a pronounced emphasis on data security, a reliance on extremely large data sets, and significant legacy investments in information technology infrastructure—that make a full migration to the public cloud difficult at present. Private and hybrid cloud solutions have consequently emerged within the industry to yield as much benefit from cloud-based technologies as possible while working within these constraints. This paper argues, however, that the move to private and hybrid clouds will very likely prove only to be a temporary stepping stone in the industry's technological evolution. By presenting evidence from other market sectors that have faced similar challenges in their journey to the cloud, we propose that enabling technologies and conditions will probably fall into place in a way that makes the public cloud a far more attractive option for the upstream oil & gas industry in the years ahead. The paper concludes with a discussion about the implications of this projected shift towards the public cloud, and calls for more of the industry's services to be offered through cloud-based “apps.”
Resumo:
Cloud computing is an emerging computing paradigm in which IT resources are provided over the Internet as a service to users. One such service offered through the Cloud is Software as a Service or SaaS. SaaS can be delivered in a composite form, consisting of a set of application and data components that work together to deliver higher-level functional software. SaaS is receiving substantial attention today from both software providers and users. It is also predicted to has positive future markets by analyst firms. This raises new challenges for SaaS providers managing SaaS, especially in large-scale data centres like Cloud. One of the challenges is providing management of Cloud resources for SaaS which guarantees maintaining SaaS performance while optimising resources use. Extensive research on the resource optimisation of Cloud service has not yet addressed the challenges of managing resources for composite SaaS. This research addresses this gap by focusing on three new problems of composite SaaS: placement, clustering and scalability. The overall aim is to develop efficient and scalable mechanisms that facilitate the delivery of high performance composite SaaS for users while optimising the resources used. All three problems are characterised as highly constrained, large-scaled and complex combinatorial optimisation problems. Therefore, evolutionary algorithms are adopted as the main technique in solving these problems. The first research problem refers to how a composite SaaS is placed onto Cloud servers to optimise its performance while satisfying the SaaS resource and response time constraints. Existing research on this problem often ignores the dependencies between components and considers placement of a homogenous type of component only. A precise problem formulation of composite SaaS placement problem is presented. A classical genetic algorithm and two versions of cooperative co-evolutionary algorithms are designed to now manage the placement of heterogeneous types of SaaS components together with their dependencies, requirements and constraints. Experimental results demonstrate the efficiency and scalability of these new algorithms. In the second problem, SaaS components are assumed to be already running on Cloud virtual machines (VMs). However, due to the environment of a Cloud, the current placement may need to be modified. Existing techniques focused mostly at the infrastructure level instead of the application level. This research addressed the problem at the application level by clustering suitable components to VMs to optimise the resource used and to maintain the SaaS performance. Two versions of grouping genetic algorithms (GGAs) are designed to cater for the structural group of a composite SaaS. The first GGA used a repair-based method while the second used a penalty-based method to handle the problem constraints. The experimental results confirmed that the GGAs always produced a better reconfiguration placement plan compared with a common heuristic for clustering problems. The third research problem deals with the replication or deletion of SaaS instances in coping with the SaaS workload. To determine a scaling plan that can minimise the resource used and maintain the SaaS performance is a critical task. Additionally, the problem consists of constraints and interdependency between components, making solutions even more difficult to find. A hybrid genetic algorithm (HGA) was developed to solve this problem by exploring the problem search space through its genetic operators and fitness function to determine the SaaS scaling plan. The HGA also uses the problem's domain knowledge to ensure that the solutions meet the problem's constraints and achieve its objectives. The experimental results demonstrated that the HGA constantly outperform a heuristic algorithm by achieving a low-cost scaling and placement plan. This research has identified three significant new problems for composite SaaS in Cloud. Various types of evolutionary algorithms have also been developed in addressing the problems where these contribute to the evolutionary computation field. The algorithms provide solutions for efficient resource management of composite SaaS in Cloud that resulted to a low total cost of ownership for users while guaranteeing the SaaS performance.
Resumo:
Live migration of multiple Virtual Machines (VMs) has become an indispensible management activity in datacenters for application performance, load balancing, server consolidation. While state-of-the-art live VM migration strategies focus on the improvement of the migration performance of a single VM, little attention has been given to the case of multiple VMs migration. Moreover, existing works on live VM migration ignore the inter-VM dependencies, and underlying network topology and its bandwidth. Different sequences of migration and different allocations of bandwidth result in different total migration times and total migration downtimes. This paper concentrates on developing a multiple VMs migration scheduling algorithm such that the performance of migration is maximized. We evaluate our proposed algorithm through simulation. The simulation results show that our proposed algorithm can migrate multiple VMs on any datacenter with minimum total migration time and total migration downtime.
Resumo:
Live migration of multiple Virtual Machines (VMs) has become an integral management activity in data centers for power saving, load balancing and system maintenance. While state-of-the-art live migration techniques focus on the improvement of migration performance of an independent single VM, only a little has been investigated to the case of live migration of multiple interacting VMs. Live migration is mostly influenced by the network bandwidth and arbitrarily migrating a VM which has data inter-dependencies with other VMs may increase the bandwidth consumption and adversely affect the performances of subsequent migrations. In this paper, we propose a Random Key Genetic Algorithm (RKGA) that efficiently schedules the migration of a given set of VMs accounting both inter-VM dependency and data center communication network. The experimental results show that the RKGA can schedule the migration of multiple VMs with significantly shorter total migration time and total downtime compared to a heuristic algorithm.
Resumo:
Cloud computing has significantly impacted a broad range of industries, but these technologies and services have been absorbed throughout the marketplace unevenly. Some industries have moved aggressively towards cloud computing, while others have moved much more slowly. For the most part, the energy sector has approached cloud computing in a measured and cautious way, with progress often in the form of private cloud solutions rather than public ones, or hybridized information technology systems that combine cloud and existing non-cloud architectures. By moving towards cloud computing in a very slow and tentative way, however, the energy industry may prevent itself from reaping the full benefit that a more complete migration to the public cloud has brought about in several other industries. This short communication is accordingly intended to offer a high-level overview of cloud computing, and to put forward the argument that the energy sector should make a more complete migration to the public cloud in order to unlock the major system-wide efficiencies that cloud computing can provide. Also, assets within the energy sector should be designed with as much modularity and flexibility as possible so that they are not locked out of cloud-friendly options in the future.
Resumo:
In this paper we present a concept of an agent-based strategy to allocate services on a Cloud system without overloading nodes and maintaining the system stability with minimum cost. To provide a base for our research we specify an abstract model of cloud resources utilization, including multiple types of resources as well as considerations for the service migration costs. We also present an early version of simulation environment and a prototype of agent-based load balancer implemented in functional language Scala and Akka framework.
Resumo:
This paper introduces a strategy to allocate services on a cloud system without overloading the nodes and maintaining the system stability with minimum cost. We specify an abstract model of cloud resources utilization, including multiple types of resources as well as considerations for the service migration costs. A prototype meta-heuristic load balancer is demonstrated and experimental results are presented and discussed. We also propose a novel genetic algorithm, where population is seeded with the outputs of other meta-heuristic algorithms.
Resumo:
In recent years, vehicular cloud computing (VCC) has emerged as a new technology which is being used in wide range of applications in the area of multimedia-based healthcare applications. In VCC, vehicles act as the intelligent machines which can be used to collect and transfer the healthcare data to the local, or global sites for storage, and computation purposes, as vehicles are having comparatively limited storage and computation power for handling the multimedia files. However, due to the dynamic changes in topology, and lack of centralized monitoring points, this information can be altered, or misused. These security breaches can result in disastrous consequences such as-loss of life or financial frauds. Therefore, to address these issues, a learning automata-assisted distributive intrusion detection system is designed based on clustering. Although there exist a number of applications where the proposed scheme can be applied but, we have taken multimedia-based healthcare application for illustration of the proposed scheme. In the proposed scheme, learning automata (LA) are assumed to be stationed on the vehicles which take clustering decisions intelligently and select one of the members of the group as a cluster-head. The cluster-heads then assist in efficient storage and dissemination of information through a cloud-based infrastructure. To secure the proposed scheme from malicious activities, standard cryptographic technique is used in which the auotmaton learns from the environment and takes adaptive decisions for identification of any malicious activity in the network. A reward and penalty is given by the stochastic environment where an automaton performs its actions so that it updates its action probability vector after getting the reinforcement signal from the environment. The proposed scheme was evaluated using extensive simulations on ns-2 with SUMO. The results obtained indicate that the proposed scheme yields an improvement of 10 % in detection rate of malicious nodes when compared with the existing schemes.
Resumo:
SOA (Service Oriented Architecture), workflow, the Semantic Web, and Grid computing are key enabling information technologies in the development of increasingly sophisticated e-Science infrastructures and application platforms. While the emergence of Cloud computing as a new computing paradigm has provided new directions and opportunities for e-Science infrastructure development, it also presents some challenges. Scientific research is increasingly finding that it is difficult to handle “big data” using traditional data processing techniques. Such challenges demonstrate the need for a comprehensive analysis on using the above mentioned informatics techniques to develop appropriate e-Science infrastructure and platforms in the context of Cloud computing. This survey paper describes recent research advances in applying informatics techniques to facilitate scientific research particularly from the Cloud computing perspective. Our particular contributions include identifying associated research challenges and opportunities, presenting lessons learned, and describing our future vision for applying Cloud computing to e-Science. We believe our research findings can help indicate the future trend of e-Science, and can inform funding and research directions in how to more appropriately employ computing technologies in scientific research. We point out the open research issues hoping to spark new development and innovation in the e-Science field.
Resumo:
The extensive use of cloud computing in educational institutes around the world brings unique challenges for universities. Some of these challenges are due to clear differences between Europe and Middle East universities. These differences stem from the natural variation between people. Cloud computing has created a new concept to deal with software services and hardware infrastructure. Some benefits are immediately gained, for instance, to allow students to share their information easily and to discover new experiences of the education system. However, this introduces more challenges, such as security and configuration of resources in shared environments. Educational institutes cannot escape from these challenges. Yet some differences occur between universities which use cloud computing as an educational tool or a form of social connection. This paper discusses some benefits and limitations of using cloud computing and major differences in using cloud computing at universities in Europe and the Middle East, based on the social perspective, security and economics concepts, and personal responsibility.