996 resultados para choice functions
Resumo:
We define different concepts of group strategy-proofness for social choice functions. We discuss the connections between the defined concepts under different assumptions on their domains of definition. We characterize the social choice functions that satisfy each one of them and whose ranges consist of two alternatives, in terms of two types of basic properties.
Resumo:
The rationalizability of a choice function by means of a transitive relation has been analyzed thoroughly in the literature. However, not much seems to be known when transitivity is weakened to quasi-transitivity or acyclicity. We describe the logical relationships between the different notions of rationalizability involving, for example, the transitivity, quasi-transitivity, or acyclicity of the rationalizing relation. Furthermore, we discuss sufficient conditions and necessary conditions for rational choice on arbitrary domains. Transitive, quasi-transitive, and acyclical rationalizability are fully characterized for domains that contain all singletons and all two-element subsets of the universal set.
Resumo:
We analyze infinite-horizon choice functions within the setting of a simple linear technology. Time consistency and efficiency are characterized by stationary consumption and inheritance functions, as well as a transversality condition. In addition, we consider the equity axioms Suppes-Sen, Pigou-Dalton, and resource monotonicity. We show that Suppes-Sen and Pigou-Dalton imply that the consumption and inheritance functions are monotone with respect to time—thus justifying sustainability—while resource monotonicity implies that the consumption and inheritance functions are monotone with respect to the resource. Examples illustrate the characterization results.
Resumo:
It is not uncommon that a society facing a choice problem has also to choose the choice rule itself. In such situation voters’ preferences on alternatives induce preferences over the voting rules. Such a setting immediately gives rise to a natural question concerning consistency between these two levels of choice. If a choice rule employed to resolve the society’s original choice problem does not choose itself when it is also used in choosing the choice rule, then this phenomenon can be regarded as inconsistency of this choice rule as it rejects itself according to its own rationale. Koray (2000) proved that the only neutral, unanimous universally self-selective social choice functions are the dictatorial ones. Here we in troduce to our society a constitution, which rules out inefficient social choice rules. When inefficient social choice rules become unavailable for comparison, the property of self-selectivity becomes weaker and we show that some non-trivial self-selective social choice functions do exist. Under certain assumptions on the constitution we describe all of them.
Resumo:
In the context of the two-stage threshold model of decision making, with the agent’s choices determined by the interaction Of three “structural variables,” we study the restrictions on behavior that arise when one or more variables are xogenously known. Our results supply necessary and sufficient conditions for consistency with the model for all possible states of partial Knowledge, and for both single- and multivalued choice functions.
Resumo:
We analyze an alternative to the standard rationalizability requirement for observed choices by considering non-deteriorating selections. A selection function is a generalization of a choice function where selected alternatives may depend on a reference (or status quo) alternative in addition to the set of feasible options. A selection function is non-deteriorating if there exists an ordering over the universal set of alternatives such that the selected alternatives are at least as good as the reference option. We characterize non-deteriorating selection functions in an abstract framework and in an economic environment.
Resumo:
Single-peaked preferences have played an important role in the literature ever since they were used by Black (1948) to formulate a domain restriction that is sufficient for the exclusion of cycles according to the majority rule. In this paper, we approach single-peakedness from a choice-theoretic perspective. We show that the well-known axiom independence of irrelevant alternatives (a form of contraction consistency) and a weak continuity requirement characterize a class of single-peaked choice functions. Moreover, we examine the rationalizability and the rationalizability-representability of these choice functions.
Resumo:
We study the problem of deriving a complete welfare ordering from a choice function. Under the sequential solution, the best alternative is the alternative chosen from the universal set; the second best is the one chosen when the best alternative is removed; and so on. We show that this is the only completion of Bernheim and Rangel's (2009) welfare relation that satisfies two natural axioms: neutrality, which ensures that the names of the alternatives are welfare-irrelevant; and persistence, which stipulates that every choice function between two welfare-identical choice functions must exhibit the same welfare ordering.
Resumo:
I analyze an economy with uncertainty in which a set of indivisible objects and a certain amount of money is to be distributed among agents. The set of intertemporally fair social choice functions based on envy-freeness and Pareto efficiency is characterized. I give a necessary and sufficient condition for its non-emptiness and propose a mechanism that implements the set of intertemporally fair allocations in Bayes-Nash equilibrium. Implementation at the ex ante stage is considered, too. I also generalize the existence result obtained with envy-freeness using a broader fairness concept, introducing the aspiration function.
Resumo:
A social choice function is group strategy-proof on a domain if no group of agents can manipulate its final outcome to their own benefit by declaring false preferences on that domain. Group strategy-proofness is a very attractive requirement of incentive compatibility. But in many cases it is hard or impossible to find nontrivial social choice functions satisfying even the weakest condition of individual strategy-proofness. However, there are a number of economically significant domains where interesting rules satisfying individual strategy-proofness can be defined, and for some of them, all these rules turn out to also satisfy the stronger requirement of group strategy-proofness. This is the case, for example, when preferences are single-peaked or single-dipped. In other cases, this equivalence does not hold. We provide sufficient conditions defining domains of preferences guaranteeing that individual and group strategy-proofness are equivalent for all rules defined on the
Resumo:
We characterize the class of strategy-proof social choice functions on the domain of symmetric single-peaked preferences. This class is strictly larger than the set of generalized median voter schemes (the class of strategy-proof and tops-only social choice functions on the domain of single-peaked preferences characterized by Moulin (1980)) since, under the domain of symmetric single-peaked preferences, generalized median voter schemes can be disturbed by discontinuity points and remain strategy-proof on the smaller domain. Our result identifies the specific nature of these discontinuities which allow to design non-onto social choice functions to deal with feasibility constraints.
Resumo:
This paper is concerned with the realism of mechanisms that implementsocial choice functions in the traditional sense. Will agents actually playthe equilibrium assumed by the analysis? As an example, we study theconvergence and stability properties of Sj\"ostr\"om's (1994) mechanism, onthe assumption that boundedly rational players find their way to equilibriumusing monotonic learning dynamics and also with fictitious play. Thismechanism implements most social choice functions in economic environmentsusing as a solution concept the iterated elimination of weakly dominatedstrategies (only one round of deletion of weakly dominated strategies isneeded). There are, however, many sets of Nash equilibria whose payoffs maybe very different from those desired by the social choice function. Withmonotonic dynamics we show that many equilibria in all the sets ofequilibria we describe are the limit points of trajectories that havecompletely mixed initial conditions. The initial conditions that lead tothese equilibria need not be very close to the limiting point. Furthermore,even if the dynamics converge to the ``right'' set of equilibria, it stillcan converge to quite a poor outcome in welfare terms. With fictitious play,if the agents have completely mixed prior beliefs, beliefs and play convergeto the outcome the planner wants to implement.
Resumo:
Consistency of a binary relation requires any preference cycle to involve indifference only. As shown by Suzumura (1976b), consistency is necessary and sufficient for the existence of an ordering extension of a relation. Because of this important role of consistency, it is of interest to examine the rationalizability of choice functions by means of consistent relations. We describe the logical relationships between the different notions of rationalizability obtained if reflexivity or completeness are added to consistency, both for greatest-element rationalizability and for maximal-element rationalizability. All but one notion of consistent rationalizability are characterized for general domains, and all of them are characterized for domains that contain all two-element subsets of the universal set.
Resumo:
We examine the maximal-element rationalizability of choice functions with arbitrary do-mains. While rationality formulated in terms of the choice of greatest elements according to a rationalizing relation has been analyzed relatively thoroughly in the earlier litera-ture, this is not the case for maximal-element rationalizability, except when it coincides with greatest-element rationalizability because of properties imposed on the rationalizing relation. We develop necessary and sufficient conditions for maximal-element rationaliz-ability by itself, and for maximal-element rationalizability in conjunction with additional properties of a rationalizing relation such as re exivity, completeness, P-acyclicity, quasi-transitivity, consistency and transitivity.
Resumo:
We study the problem of assigning indivisible and heterogenous objects (e.g., houses, jobs, offices, school or university admissions etc.) to agents. Each agent receives at most one object and monetary compensations are not possible. We consider mechanisms satisfying a set of basic properties (unavailable-type-invariance, individual-rationality, weak non-wastefulness, or truncation-invariance). In the house allocation problem, where at most one copy of each object is available, deferred-acceptance (DA)-mechanisms allocate objects based on exogenously fixed objects' priorities over agents and the agent-proposing deferred-acceptance-algorithm. For house allocation we show that DA-mechanisms are characterized by our basic properties and (i) strategy-proofness and population-monotonicity or (ii) strategy-proofness and resource-monotonicity. Once we allow for multiple identical copies of objects, on the one hand the first characterization breaks down and there are unstable mechanisms satisfying our basic properties and (i) strategy-proofness and population-monotonicity. On the other hand, our basic properties and (ii) strategy-proofness and resource-monotonicity characterize (the most general) class of DA-mechanisms based on objects' fixed choice functions that are acceptant, monotonic, substitutable, and consistent. These choice functions are used by objects to reject agents in the agent-proposing deferred-acceptance-algorithm. Therefore, in the general model resource-monotonicity is the «stronger» comparative statics requirement because it characterizes (together with our basic requirements and strategy-proofness) choice-based DA-mechanisms whereas population-monotonicity (together with our basic properties and strategy-proofness) does not.