911 resultados para chlorophyll-a algorithms.
Resumo:
Nearly half of the earth's photosynthetically fixed carbon derives from the oceans. To determine global and region specific rates, we rely on models that estimate marine net primary productivity (NPP) thus it is essential that these models are evaluated to determine their accuracy. Here we assessed the skill of 21 ocean color models by comparing their estimates of depth-integrated NPP to 1156 in situ C-14 measurements encompassing ten marine regions including the Sargasso Sea, pelagic North Atlantic, coastal Northeast Atlantic, Black Sea, Mediterranean Sea, Arabian Sea, subtropical North Pacific, Ross Sea, West Antarctic Peninsula, and the Antarctic Polar Frontal Zone. Average model skill, as determined by root-mean square difference calculations, was lowest in the Black and Mediterranean Seas, highest in the pelagic North Atlantic and the Antarctic Polar Frontal Zone, and intermediate in the other six regions. The maximum fraction of model skill that may be attributable to uncertainties in both the input variables and in situ NPP measurements was nearly 72%. on average, the simplest depth/wavelength integrated models performed no worse than the more complex depth/wavelength resolved models. Ocean color models were not highly challenged in extreme conditions of surface chlorophyll-a and sea surface temperature, nor in high-nitrate low-chlorophyll waters. Water column depth was the primary influence on ocean color model performance such that average skill was significantly higher at depths greater than 250 m, suggesting that ocean color models are more challenged in Case-2 waters (coastal) than in Case-1 (pelagic) waters. Given that in situ chlorophyll-a data was used as input data, algorithm improvement is required to eliminate the poor performance of ocean color NPP models in Case-2 waters that are close to coastlines. Finally, ocean color chlorophyll-a algorithms are challenged by optically complex Case-2 waters, thus using satellite-derived chlorophyll-a to estimate NPP in coastal areas would likely further reduce the skill of ocean color models.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Gestão e Sistemas Ambientais
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The spectral reflectance of the sea surface recorded using ocean colour satellite sensors has been used to estimate chlorophyll-a concentrations for decades. However, in bio-optically complex coastal waters, these estimates are compromised by the presence of several other coloured components besides chlorophyll, especially in regions affected by low-salinity waters. The present work aims to (a) describe the influence of the freshwater plume from the La Plata River on the variability of in situ remote sensing reflectance and (b) evaluate the performance of operational ocean colour chlorophyll algorithms applied to Southwestern Atlantic waters, which receive a remarkable seasonal contribution from La Plata River discharges. Data from three oceanographic cruises are used, in addition to a historical regional bio-optical dataset. Deviations found between measured and estimated concentrations of chlorophyll-a are examined in relation to surface water salinity and turbidity gradients to investigate the source of errors in satellite estimates of pigment concentrations. We observed significant seasonal variability in surface reflectance properties that are strongly driven by La Plata River plume dynamics and arise from the presence of high levels of inorganic suspended solids and coloured dissolved materials. As expected, existing operational algorithms overestimate the concentration of chlorophyll-a, especially in waters of low salinity (S<33.5) and high turbidity (Rrs(670)>0.0012 sr−1). Additionally, an updated version of the regional algorithm is presented, which clearly improves the chlorophyll estimation in those types of coastal environment. In general, the techniques presented here allow us to directly distinguish the bio-optical types of waters to be considered in algorithm studies by the ocean colour community.
Resumo:
The relationship between phytoplankton assemblages and the associated optical properties of the water body is important for the further development of algorithms for large-scale remote sensing of phytoplankton biomass and the identification of phytoplankton functional types (PFTs), which are often representative for different biogeochemical export scenarios. Optical in-situ measurements aid in the identification of phytoplankton groups with differing pigment compositions and are widely used to validate remote sensing data. In this study we present results from an interdisciplinary cruise aboard the RV Polarstern along a north-to-south transect in the eastern Atlantic Ocean in November 2008. Phytoplankton community composition was identified using a broad set of in-situ measurements. Water samples from the surface and the depth of maximum chlorophyll concentration were analyzed by high performance liquid chromatography (HPLC), flow cytometry, spectrophotometry and microscopy. Simultaneously, the above- and underwater light field was measured by a set of high spectral resolution (hyperspectral) radiometers. An unsupervised cluster algorithm applied to the measured parameters allowed us to define bio-optical provinces, which we compared to ecological provinces proposed elsewhere in the literature. As could be expected, picophytoplankton was responsible for most of the variability of PFTs in the eastern Atlantic Ocean. Our bio-optical clusters agreed well with established provinces and thus can be used to classify areas of similar biogeography. This method has the potential to become an automated approach where satellite data could be used to identify shifting boundaries of established ecological provinces or to track exceptions from the rule to improve our understanding of the biogeochemical cycles in the ocean.
Resumo:
The CoastColour project Round Robin (CCRR) project (http://www.coastcolour.org) funded by the European Space Agency (ESA) was designed to bring together a variety of reference datasets and to use these to test algorithms and assess their accuracy for retrieving water quality parameters. This information was then developed to help end-users of remote sensing products to select the most accurate algorithms for their coastal region. To facilitate this, an inter-comparison of the performance of algorithms for the retrieval of in-water properties over coastal waters was carried out. The comparison used three types of datasets on which ocean colour algorithms were tested. The description and comparison of the three datasets are the focus of this paper, and include the Medium Resolution Imaging Spectrometer (MERIS) Level 2 match-ups, in situ reflectance measurements and data generated by a radiative transfer model (HydroLight). The datasets mainly consisted of 6,484 marine reflectance associated with various geometrical (sensor viewing and solar angles) and sky conditions and water constituents: Total Suspended Matter (TSM) and Chlorophyll-a (CHL) concentrations, and the absorption of Coloured Dissolved Organic Matter (CDOM). Inherent optical properties were also provided in the simulated datasets (5,000 simulations) and from 3,054 match-up locations. The distributions of reflectance at selected MERIS bands and band ratios, CHL and TSM as a function of reflectance, from the three datasets are compared. Match-up and in situ sites where deviations occur are identified. The distribution of the three reflectance datasets are also compared to the simulated and in situ reflectances used previously by the International Ocean Colour Coordinating Group (IOCCG, 2006) for algorithm testing, showing a clear extension of the CCRR data which covers more turbid waters.
Resumo:
Many studies have shown the considerable potential for the application of remote-sensing-based methods for deriving estimates of lake water quality. However, the reliable application of these methods across time and space is complicated by the diversity of lake types, sensor configuration, and the multitude of different algorithms proposed. This study tested one operational and 46 empirical algorithms sourced from the peer-reviewed literature that have individually shown potential for estimating lake water quality properties in the form of chlorophyll-a (algal biomass) and Secchi disc depth (SDD) (water transparency) in independent studies. Nearly half (19) of the algorithms were unsuitable for use with the remote-sensing data available for this study. The remaining 28 were assessed using the Terra/Aqua satellite archive to identify the best performing algorithms in terms of accuracy and transferability within the period 2001–2004 in four test lakes, namely Vänern, Vättern, Geneva, and Balaton. These lakes represent the broad continuum of large European lake types, varying in terms of eco-region (latitude/longitude and altitude), morphology, mixing regime, and trophic status. All algorithms were tested for each lake separately and combined to assess the degree of their applicability in ecologically different sites. None of the algorithms assessed in this study exhibited promise when all four lakes were combined into a single data set and most algorithms performed poorly even for specific lake types. A chlorophyll-a retrieval algorithm originally developed for eutrophic lakes showed the most promising results (R2 = 0.59) in oligotrophic lakes. Two SDD retrieval algorithms, one originally developed for turbid lakes and the other for lakes with various characteristics, exhibited promising results in relatively less turbid lakes (R2 = 0.62 and 0.76, respectively). The results presented here highlight the complexity associated with remotely sensed lake water quality estimates and the high degree of uncertainty due to various limitations, including the lake water optical properties and the choice of methods.
Resumo:
To evaluate the performance of ocean-colour retrievals of total chlorophyll-a concentration requires direct comparison with concomitant and co-located in situ data. For global comparisons, these in situ match-ups should be ideally representative of the distribution of total chlorophyll-a concentration in the global ocean. The oligotrophic gyres constitute the majority of oceanic water, yet are under-sampled due to their inaccessibility and under-represented in global in situ databases. The Atlantic Meridional Transect (AMT) is one of only a few programmes that consistently sample oligotrophic waters. In this paper, we used a spectrophotometer on two AMT cruises (AMT19 and AMT22) to continuously measure absorption by particles in the water of the ship's flow-through system. From these optical data continuous total chlorophyll-a concentrations were estimated with high precision and accuracy along each cruise and used to evaluate the performance of ocean-colour algorithms. We conducted the evaluation using level 3 binned ocean-colour products, and used the high spatial and temporal resolution of the underway system to maximise the number of match-ups on each cruise. Statistical comparisons show a significant improvement in the performance of satellite chlorophyll algorithms over previous studies, with root mean square errors on average less than half (~ 0.16 in log10 space) that reported previously using global datasets (~ 0.34 in log10 space). This improved performance is likely due to the use of continuous absorption-based chlorophyll estimates, that are highly accurate, sample spatial scales more comparable with satellite pixels, and minimise human errors. Previous comparisons might have reported higher errors due to regional biases in datasets and methodological inconsistencies between investigators. Furthermore, our comparison showed an underestimate in satellite chlorophyll at low concentrations in 2012 (AMT22), likely due to a small bias in satellite remote-sensing reflectance data. Our results highlight the benefits of using underway spectrophotometric systems for evaluating satellite ocean-colour data and underline the importance of maintaining in situ observatories that sample the oligotrophic gyres.
Resumo:
To evaluate the performance of ocean-colour retrievals of total chlorophyll-a concentration requires direct comparison with concomitant and co-located in situ data. For global comparisons, these in situ match-ups should be ideally representative of the distribution of total chlorophyll-a concentration in the global ocean. The oligotrophic gyres constitute the majority of oceanic water, yet are under-sampled due to their inaccessibility and under-represented in global in situ databases. The Atlantic Meridional Transect (AMT) is one of only a few programmes that consistently sample oligotrophic waters. In this paper, we used a spectrophotometer on two AMT cruises (AMT19 and AMT22) to continuously measure absorption by particles in the water of the ship's flow-through system. From these optical data continuous total chlorophyll-a concentrations were estimated with high precision and accuracy along each cruise and used to evaluate the performance of ocean-colour algorithms. We conducted the evaluation using level 3 binned ocean-colour products, and used the high spatial and temporal resolution of the underway system to maximise the number of match-ups on each cruise. Statistical comparisons show a significant improvement in the performance of satellite chlorophyll algorithms over previous studies, with root mean square errors on average less than half (~ 0.16 in log10 space) that reported previously using global datasets (~ 0.34 in log10 space). This improved performance is likely due to the use of continuous absorption-based chlorophyll estimates, that are highly accurate, sample spatial scales more comparable with satellite pixels, and minimise human errors. Previous comparisons might have reported higher errors due to regional biases in datasets and methodological inconsistencies between investigators. Furthermore, our comparison showed an underestimate in satellite chlorophyll at low concentrations in 2012 (AMT22), likely due to a small bias in satellite remote-sensing reflectance data. Our results highlight the benefits of using underway spectrophotometric systems for evaluating satellite ocean-colour data and underline the importance of maintaining in situ observatories that sample the oligotrophic gyres.
Biased Random-key Genetic Algorithms For The Winner Determination Problem In Combinatorial Auctions.
Resumo:
Abstract In this paper, we address the problem of picking a subset of bids in a general combinatorial auction so as to maximize the overall profit using the first-price model. This winner determination problem assumes that a single bidding round is held to determine both the winners and prices to be paid. We introduce six variants of biased random-key genetic algorithms for this problem. Three of them use a novel initialization technique that makes use of solutions of intermediate linear programming relaxations of an exact mixed integer-linear programming model as initial chromosomes of the population. An experimental evaluation compares the effectiveness of the proposed algorithms with the standard mixed linear integer programming formulation, a specialized exact algorithm, and the best-performing heuristics proposed for this problem. The proposed algorithms are competitive and offer strong results, mainly for large-scale auctions.
Resumo:
We propose and analyze two different Bayesian online algorithms for learning in discrete Hidden Markov Models and compare their performance with the already known Baldi-Chauvin Algorithm. Using the Kullback-Leibler divergence as a measure of generalization we draw learning curves in simplified situations for these algorithms and compare their performances.
Resumo:
Voltage and current waveforms of a distribution or transmission power system are not pure sinusoids. There are distortions in these waveforms that can be represented as a combination of the fundamental frequency, harmonics and high frequency transients. This paper presents a novel approach to identifying harmonics in power system distorted waveforms. The proposed method is based on Genetic Algorithms, which is an optimization technique inspired by genetics and natural evolution. GOOAL, a specially designed intelligent algorithm for optimization problems, was successfully implemented and tested. Two kinds of representations concerning chromosomes are utilized: binary and real. The results show that the proposed method is more precise than the traditional Fourier Transform, especially considering the real representation of the chromosomes.