958 resultados para chitosan derivative
Resumo:
We present here the synthesis of a highly O-carboxymethylated chitosan derivative. First, an improved protocol for the two-step synthesis of N-trimethyl chitosan (TMC) from chitosan was developed, yielding a maximum degree of quaternization (DQ) of up to 46.6%. Successively, the chitosan derivative O-carboxymethyl-N-trimethyl chitosan (CMTMC) was synthesized from the TMC obtained by applying an optimized synthesis pathway. In contrast to previous reports, the optimized protocol was shown to yield very high rates (>85%) of O-carboxymethylation of CMTMC, as shown by (1)H NMR and heteronuclear single quantum correlation ((1)H-(13)C HSQC). Finally, in vitro cytocompatibility (viability >80%) of the polymer was demonstrated using human fibroblasts.
Resumo:
RGD peptide sequences are known to regulate cellular activities by interacting with α5β1, αvβ5 and αvβ3 integrin, which contributes to the wound healing process. In this study, RGDC peptide was immobilized onto chitosan derivative 1,6-diaminohexane-O-carboxymethyl-N,N,N-trimethyl chitosan (DAH-CMTMC) to display RGDC-promoting adhesion for enhanced wound healing. The efficiency of N-methylation, O-carboxymethylation and spacer grafting was quantitatively and qualitatively analyzed by (1)H NMR and FTIR, yielding 0.38 degree of substitution for N-methylation and >0.85 for O-carboxymethylation. The glass transition temperatures for chitosan derivatives were also studied. Peptide immobilization was achieved through sulfhydryl groups using sulfosuccinimidyl (4-iodoacetyl)amino-benzoate (sulfo-SIAB method). RGDC immobilized peptide onto DAH-CMTMC was found to be about 15.3μg/mg of chitosan derivative by amino acid analysis (AAA). The significant increase of human dermal fibroblast (HDF) viability in vitro over 7 days suggests that RGDC-functionalized chitosan may lead to enhanced wound healing (viability >140%). Moreover, bio-adhesion and proliferation assays confirmed that coatings of RGDC-functionalized chitosan derivatives exhibit in vitro wound healing properties by enhancing fibroblast proliferation and adhesion. These results showed that RGDC peptide-functionalized chitosan provides an optimal environment for fibroblast adhesion and proliferation.
Resumo:
Membrane filtration has become an accepted technology for the removal of pathogens from drinking water. Viruses, known to contaminate water supplies, are too small to be removed by a size-exclusion mechanism without a large energy penalty. Thus, functionalized electrospun membranes that can adsorb viruses have drawn our interest. We chose a quaternized chitosan derivative (HTCC) which carries a positively-charged quaternary amine, known to bind negatively-charged virus particles, as a functionalized membrane material. The technique of electrospinning was utilized to produce nanofiber mats with large pore diameters to increase water flux and decrease membrane fouling. In this study, stable, functionalized, electrospun HTCC-PVA nanofibers that can remove 3.6 logs (99.97%) of a model virus, porcine parvovirus (PPV), from water by adsorption and filtration have been successfully produced. This technology has the potential to purify drinking water in undeveloped countries and reduce the number of deaths due to lack of sanitation.
Resumo:
Spray-drying is an effective process for preparing micron-dimensioned particles for pulmonary delivery. Previously, we have demonstrated enhanced dispersibility and fine particle fraction of spray-dried nonviral gene delivery formulations using amino acids or absorption enhancers as dispersibility-enhancing excipients. In this study, we investigate the use of the cationic polymer chitosan as a readily available and biocompatible dispersibility enhancer. Lactose-lipid:polycation:pDNA (LPD) powders were prepared by spray-drying and post-mixed with chitosan or spray-dried chitosan. In addition, the water-soluble chitosan derivative, trimethyl chitosan, was added to the lactose-LPD formulation before spray-drying. Spray-dried chitosan particles, displaying an irregular surface morphology and diameter of less than 2 mu m, readily adsorbed to lactose-LPD particles following mixing. In contrast with the smooth spherical surface of lactose-LPD particles, spray-dried trimethyl chitosan-lactose-LPD particles demonstrated increased surface roughness and a unimodal particle size distribution (mean diameter 3.4 mu m), compared with the multimodal distribution for unmodified lactose-LPD powders (mean diameter 23.7 mu m). The emitted dose and in vitro deposition of chitosan-modified powders was significantly greater than that of unmodified powders. Moreover, the inclusion of chitosan mediated an enhanced level of reporter gene expression. In summary, chitosan enhances the dispersibility and in vitro pulmonary deposition performance of spray-dried powders.
Resumo:
The stabilization of alumina suspensions is key to the development of high-performance materials for the ceramic industry, which has motivated extensive research into synthetic polymers used as stabilizers. In this study, mimosa tannin extract and a chitosan derivative, that is, macromolecules obtained from renewable resources, are shown to be promising to replace synthetic polymers, yielding less viscous suspensions with smaller particles and greater fluidity, that is, more homogeneous suspensions that may lead to better-quality products. The functional groups of tannin present in mimosa extract and N,N,N-trimethylchitosan (TMC) are capable of establishing interactions with the alumina surface, thus leading to repulsion between the particles mainly due to steric and electrosteric mechanisms, respectively. The stabilization of the suspension induced by either TMC or mimosa tannin was confirmed by a considerable decrease in viscosity and average particle size, in comparison with alumina suspensions without stabilizing agents. The viscosity/average particle size decreased by 49/84% and 52/87% for suspensions with TMC and mimosa tannin, respectively. In addition, the increase in the absolute zeta potential upon addition of either TMC or mimosa tannin extract, especially at high pHs, points to an increased stability of the suspension. The feasibility of using derivatives of macromolecules from renewable sources to stabilize aqueous alumina suspensions was therefore demonstrated. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 117: 58-66, 2010
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Thermo-sensitive chitosan-cellulose derivative hydrogels: swelling behaviour and morphologic studies
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
CH, Chitosan; HPMC, (Hydroxypropyl)methyl cellulose; FT, Freeze-thaw; SC, Solvent casting; CH:HPMC (X:Y), pH Z, FT/SC, Chitosan and (hydroxypropyl)methyl cellulose hydrogel, at X and Y proportion (0-100), at Z pH (3.0-4.0) and prepared by freeze-thaw or solvent casting techniques; DSC, Differential scanning calorimetry; MDSC, Temperature modulated Differential scanning calorimetry; Tg, glass transition temperature; ΔH, enthalpy change; TGA, Thermogravimetric Analysis; TG, Thermogravimetry; DTG, Derivative or Differential thermogravimetry; σ, Tensile strength; ε, elongation at break; DMA, Dynamic mechanical analysis; X-Ray, X-radiation, FTIR-ATR, Attenuated total reflectance Fourier transform infrared spectroscopy; SEM, Scanning electron microscopy.
Resumo:
CH, Chitosan; HPMC, (Hydroxypropyl)methyl cellulose; FT, Freeze-thaw; SC, Solvent casting; CH:HPMC (X:Y), pH Z, FT/SC, Chitosan and (hydroxypropyl)methyl cellulose hydrogel, at X and Y proportion (0-100), at Z pH (3.0-4.0) and prepared by freeze-thaw or solvent casting techniques; DSC, Differential scanning calorimetry; MDSC, Temperature modulated Differential scanning calorimetry; Tg, glass transition temperature; ΔH, enthalpy change; TGA, Thermogravimetric Analysis; TG, Thermogravimetry; DTG, Derivative or Differential thermogravimetry; σ, Tensile strength; ε, elongation at break; DMA, Dynamic mechanical analysis; X-Ray, X-radiation, FTIR-ATR, Attenuated total reflectance Fourier transform infrared spectroscopy; SEM, Scanning electron microscopy.
Resumo:
The biocompatibility of chitosan and chitosan quaternary salt coatings was evaluated for use as edible coatings for sliced apple. Measurement of water loss, color change, and fungal growth appearance were monitored as a function of time. A significant brownish effect was observed on chitosan coated slices, varying greatly from L* = 76.5 and Hue angle = 95.9° (t = 0) to L* = 45.3 and Hue angle = 69.8° (t = 3 days), whilst for TMC coated samples the variation was considerable lower (L* = 74.1; Hue angle = 95.0°) to (L* = 67.0; Hue angle = 83.8°) within the same period. The hydrosoluble derivative N,N,N-trimethylchitosan demonstrated good antifungal activity against P. expansum although highly dependent on the polymer properties such as degree of quaternization. The most efficient formulation was that prepared from derivative having a degree of quaternization of 45%, high solubility, and high viscosity. This formulation restrained fungus spreading up to 30%, while for the control it reached almost 80% of the total assessed surfaces during 7 days of storage.
Resumo:
Chitosan and its half-acetylated derivative have been compared as excipients in mucoadhesive tablets containing ibuprofen. Initially the powder formulations containing the polymers and the drug were prepared by either co-spray drying or physical co-grinding. Polymer–drug interactions and the degree of drug crystallinity in these formulations were assessed by infrared spectroscopy and differential scanning calorimetry. Tablets were prepared and their swelling and dissolution properties were studied in media of various pHs. Mucoadhesive properties of ibuprofen-loaded and drug-free tablets were evaluated by analysing their detachment from pig gastric mucosa over a range of pHs. Greater polymer–drug interactions were seen for spray-dried particles compared to co-ground samples and drug loading into chitosan-based microparticles (41%) was greater than the corresponding half-acetylated samples (32%). Swelling and drug release was greater with the half-acetylated chitosan tablets than tablets containing the parent polymer and both tablets were mucoadhesive, the extent of which was dependent on substrate pH. The results illustrate the potential sustained drug delivery benefits of both chitosan and its half-acetylated derivative as mucoadhesive tablet excipients.
Resumo:
There is considerable interest in incorporating stabilized vitamins into biopolymeric nanoparticles, especially in the development of carriers and active systems for pharmaceutical and food applications. Amongst biopolymer, chitosan is highly desirable owing to its good biocompatibility, biodegradability and ability to be chemically modified. In this paper, nanoparticles from three kinds of water-soluble derivative chitosan (N,N,N-trimethyl chitosan, TMC) have successfully been synthesized by ionic gelation with tripolyphosphate (TPP) anions. Combinations of concentrations of TMC and TPP have resulted in nanoparticles with varying sizes for which the capability for loading with vitamins was investigated. Zeta potential measurement and particle size analysis demonstrated that the size of the nanoparticles wasoptimized (196±8nm) when the lowest TMC and TPP amounts were used, i.e., 0.86mgmL -1 and 0.114mgmL -1 respectively. As the TMC and/or the TPP concentrations increase, the resulting size of the nanoparticles increases considerably. Three different vitamins (B9, B12 and C) were tested as additives and the final system characterized in relation to size, morphology, spectroscopic and zeta potential properties. In general, the incorporation of vitamins increased all the TMC-TPP original nanoparticle sizes, reaching a maximum diameter of 534±20nm when loaded with vitamin C. The presence of vitamins also decreases the zeta potential, with one exception observed when using vitamin C. The preliminary results of this study suggested that all TMC/TPP nanoparticles can be successfully used as a stable medium to incorporate and transport vitamins, with potential applications in foodstuffs. © 2011 Elsevier Ltd.
Resumo:
In this work pellets containing chitosan for colonic drug delivery were developed. The influence of the polysaccharide in the pellets was evaluated by swelling, drug dissolution and intestinal permeation studies. Drug-loaded pellets containing chitosan as swellable polymer were coated with an inner layer of Kollicoat® SR 30 D and an outer layer of the enteric polymer Kollicoat® MAE 30 DP in a fluidized-bed apparatus. Metronidazole released from pellets was assessed using Bio-Dis dissolution method. Swelling, drug release and intestinal permeation were dependent on the chitosan and the coating composition. The drug release data fitted well with the Weibull equation, indicating that the drug release was controlled by diffusion, polymer relaxation and erosion occurring simultaneously. The film coating was found to be the main factor controlling the drug release and the chitosan controlling the drug intestinal permeation. Coated pellets containing chitosan show great potential as a system for drug delivery to the colon. © 2012 Elsevier Ltd.
Resumo:
Two series of new chitosan derivatives were synthesized by reaction of deacetylated chitosan (CH) with propyl (CH-Propyl) and pentyl (CH-Pentyl) trimethylammonium bromides to obtain derivatives with increasing degrees of substitution (DS). The derivatives were characterized by 1H NMR and potentiometric titration techniques and their antifungal activities on the mycelial growth of Aspergillus flavus were investigated in vitro. The antifungal activities increase with DS and the more substituted derivatives of both series, CH-Propyl and CH-Pentyl, exhibited antifungal activities respectively three and six times higher than those obtained with commercial and deacetylated chitosan. The minimum inhibitory concentrations (MIC) were evaluated at 24, 48 and 72h by varying the polymer concentration from 0.5 to 16g/L and the results showed that the quaternary derivatives inhibited the fungus growth at polymer concentrations four times lower than that obtained with deacetylated chitosan (CH). The chitosans modified with pentyltrimethylammonium bromide exhibited higher activity and results are discussed taking into account the degree of substitution (DS). © 2012 Elsevier GmbH.