921 resultados para cellulose digestion
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to conduct a number of controlled digestions to obtain easily comparable cellulose solubilisation rates and to compare these rates to those found in the literature to see which operational differences were significant in affecting cellulose degradation during anaerobic digestion. The results suggested that differences in volumetric cellulose solubilisation rates were not indicative of the true performance of cellulose digestion systems. When cellulose solubilisation rates were normalised by the mass of cellulose in the reactor at each time step, the comparison of the rates became more meaningful. Cellulose solubilisation was surface area limited. Therefore, changes in the loading rate of cellulose to the reactor altered the volumetric solubilisation rate without changing the mass normalised rate. Comparison of mass normalised solubilisation rates from this study and the literature demonstrated that differences in reactor configuration and operational conditions did not significantly impact on the solubilisation rate whereas the difference in composition of the microbial communities showed a marked effect. This work highlights the importance of using appropriately normalised data when making comparisons between systems with differing operational conditions. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Nutrition plays an important role in the development of all organisms and in particular that of farmed aquatic species where costs associated with feed can often exceed 60% of total production costs. Crustacean species in addition, have the added metabolic requirement for regular moulting to allow normal growth and this requires large amounts of energy in the form of sugars (glucose). The current study explored the capacity of the giant freshwater prawn to produce endogenous cellulose-degrading enzymes capable of extracting nutrients (simple sugars) from plant sources in formulated feeds used in the prawn aquaculture industry. We identified a putative cellulase cDNA fragment in the target organism of 1576 base pairs in length of non-microbial origin that after protein modelling exhibited a TM-score of 0.916 with a described cellulase reported from another crustacean species. The functional role of cellulase enzymes is to hydrolyse cellulose to glucose and the fragment identified in GFP was highly expressed in the hepatopancreas, the site of primary food digestion and absorption in crustaceans. Hepatopancreatic tissue from Macrobrachium rosenbergii also showed active digestion of cellulose to glucose following an endoglucanase assay. Cellulase gene(s) are present in the genomes of many invertebrate taxa and play an active role in the conversion of cellulose to available energy. Identification and characterization of endogenous cellulase gene(s) in giant freshwater prawn can assist development of the culture industry because the findings confirm that potentially greater levels of low-cost plant-material could be included in artificial formulated diets in the future without necessarily compromising individual growth performance. Ultimately, this development may contribute to more efficient, cost-effective production systems for freshwater prawn culture stocks that meet the animal's basic nutritional requirements and that also support good individual growth rates.
Resumo:
Avaliaram-se o crescimento da população, a atividade in vitro da enzima 1,4-b-endoglucanase e a taxa de digestão de celulose em culturas de Ruminococcus flavefaciens FD1 na presença de 50, 100, 200 e 400µg/ml de taninos purificado das leguminosas Mimosa hostilis (Jurema Preta), Mimosa caesalpinifolia (Sabiá) e Bauhinia cheilantha (Mororó). O crescimento bacteriano, a atividade da endoglucanase e a digestão de celulose foram fortemente inibidos pela presença dos taninos condensados purificados das três espécies, entretanto, a intensidade da inibição foi variável em função da espécie da leguminosa e da concentração de tanino.
Resumo:
Sugarcane bagasse was characterized as a feedstock for the production of ethanol using hydrothermal pretreatment. Reaction temperature and time were varied between 160 and 200A degrees C and 5-20 min, respectively, using a response surface experimental design. The liquid fraction was analyzed for soluble carbohydrates and furan aldehydes. The solid fraction was analyzed for structural carbohydrates and Klason lignin. Pretreatment conditions were evaluated based on enzymatic extraction of glucose and xylose and conversion to ethanol using a simultaneous saccharification and fermentation scheme. SSF experiments were conducted with the washed pretreated biomass. The severity of the pretreatment should be sufficient to drive enzymatic digestion and ethanol yields, however, sugars losses and especially sugar conversion into furans needs to be minimized. As expected, furfural production increased with pretreatment severity and specifically xylose release. However, provided that the severity was kept below a general severity factor of 4.0, production of furfural was below an inhibitory concentration and carbohydrate contents were preserved in the pretreated whole hydrolysate. There were significant interactions between time and temperature for all the responses except cellulose digestion. The models were highly predictive for cellulose digestibility (R (2) = 0.8861) and for ethanol production (R (2) = 0.9581), but less so for xylose extraction. Both cellulose digestion and ethanol production increased with severity, however, high levels of furfural generated under more severe pretreatment conditions favor lower severity pretreatments. The optimal pretreatment condition that gave the highest conversion yield of ethanol, while minimizing furfural production, was judged to be 190A degrees C and 17.2 min. The whole hydrolysate was also converted to ethanol using SSF. To reduce the concentration of inhibitors, the liquid fraction was conditioned prior to fermentation by removing inhibitory chemicals using the fungus Coniochaeta ligniaria.
Resumo:
La cellulose et ses dérivés sont utilisés dans un vaste nombre d’applications incluant le domaine pharmaceutique pour la fabrication de médicaments en tant qu’excipient. Différents dérivés cellulosiques tels que le carboxyméthylcellulose (CMC) et l’hydroxyéthylcellulose (HEC) sont disponibles sur le commerce. Le degré de polymérisation et de modification diffèrent énormément d’un fournisseur à l’autre tout dépendamment de l’origine de la cellulose et de leur procédé de dérivation, leur conférant ainsi différentes propriétés physico-chimiques qui leurs sont propres, telles que la viscosité et la solubilité. Notre intérêt est de développer une méthode analytique permettant de distinguer la différence entre deux sources d’un produit CMC ou HEC. L’objectif spécifique de cette étude de maitrise était l’obtention d’un profil cartographique de ces biopolymères complexes et ce, par le développement d’une méthode de digestion enzymatique donnant les oligosaccharides de plus petites tailles et par la séparation de ces oligosaccharides par les méthodes chromatographiques simples. La digestion fut étudiée avec différents paramètres, tel que le milieu de l’hydrolyse, le pH, la température, le temps de digestion et le ratio substrat/enzyme. Une cellulase de Trichoderma reesei ATCC 26921 fut utilisée pour la digestion partielle de nos échantillons de cellulose. Les oligosaccharides ne possédant pas de groupements chromophores ou fluorophores, ils ne peuvent donc être détectés ni par absorbance UV-Vis, ni par fluorescence. Il a donc été question d’élaborer une méthode de marquage des oligosaccharides avec différents agents, tels que l’acide 8-aminopyrène-1,3,6-trisulfonique (APTS), le 3-acétylamino-6-aminoacridine (AA-Ac) et la phénylhydrazine (PHN). Enfin, l’utilisation de l’électrophorèse capillaire et la chromatographie liquide à haute performance a permis la séparation des produits de digestion enzymatique des dérivés de cellulose. Pour chacune de ces méthodes analytiques, plusieurs paramètres de séparation ont été étudiés.
Resumo:
This study compares process data with microscopic observations from an anaerobic digestion of organic particles. As the first part of the study, this article presents detailed observations of microbial biofilm architecture and structure in a 1.25-L batch digester where all particles are of an equal age. Microcrystalline cellulose was used as the sole carbon and energy source. The digestions were inoculated with either leachate from a 220-Lanaerobic municipal solid waste digester or strained rumen contents from a fistulated cow. The hydrolysis rate, when normalized by the amount of cellulose remaining in the reactor, was found to reach a constant value 1 day after inoculation with rumen fluid, and 3 days after inoculating with digester leachate. A constant value of a mass specific hydrolysis rate is argued to represent full colonization of the cellulose surface and first-order kinetics only apply after this point. Additionally, the first-order hydrolysis rate constant, once surfaces were saturated with biofilm, was found to be two times higher with a rumen inoculum, compared to a digester leachate inoculum. Images generated by fluorescence in situ hybridization (FISH) probing and confocal laser scanning microscopy show that the microbial communities involved in the anaerobic biodegradation process exist entirely within the biofilm. For the reactor conditions used in these experiments, the predominant methanogens exist in ball-shaped colonies within the biofilm. (C) 2005 Wiley Periodicals, Inc.
Resumo:
It is widely accepted that cellulose is the rate-limiting substrate in the anaerobic digestion of organic solid wastes and that cellulose solubilisation is largely mediated by surface attached bacteria. However, little is known about the identity or the ecophysiology of cellulolytic microorganisms from landfills and anaerobic digesters. The aim of this study was to investigate an enriched cellulolytic microbial community from an anaerobic batch reactor. Chemical oxygen demand balancing was used to calculate the cellulose solubilisation rate and the degree of cellulose solubilisation. Fluorescence in situ hybridisation (FISH) was used to assess the relative abundance and physical location of three groups of bacteria belonging to the Clostridium lineage of the Firmicutes that have been implicated as the dominant cellulose degraders in this system. Quantitation of the relative abundance using FISH showed that there were changes in the microbial community structure throughout the digestion. However, comparison of these results to the process data reveals that these changes had no impact on the cellulose solubilisation in the reactor. The rate of cellulose solubilisation was approximately stable for much of the digestion despite changes in the cellulolytic population. The solubilisation rate appears to be most strongly affected by the rate of surface area colonisation and the biofilm architecture with the accepted model of first order kinetics due to surface area limitation applying only when the cellulose particles are fully covered with a thin layer of cells. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Separately, polyphenols and plant cell walls (PCW) are important contributors to the health benefits associated with fruits and vegetables. However, interactions with PCW which occur either during food preparation or mastication may affect bioaccessibility and hence bioavailability of polyphenols. Binding interactions between anthocyanins, phenolic acids (PAs) and PCW components, were evaluated using both a bacterial cellulose-pectin model system and a black carrot puree system. The majority of available polyphenols bound to PCW material with 60-70% of available anthocyanins and PAs respectively binding to black carrot puree PCW matter. Once bound, release of polyphenols using acidified methanol is low with only similar to 20% of total anthocyanins to similar to 30% of PAs being released. Less than 2% of bound polyphenol was released after in vitro gastric and small intestinal (S.I.) digestion for both the model system and the black carrot puree PCW matter. Confocal laser scanning microscopy shows localised binding of anthocyanins to PCW. Very similar patterns of binding for anthocyanins and PAs suggest that PAs form complexes with anthocyanins and polysaccharides. Time dependent changes in extractability with acidified methanol but not the total bound fraction suggests that initial nonspecific deposition on cellulose surfaces is followed by rearrangement of the bound molecules. Minimal release of anthocyanins and PAs after simulated gastric and S.I. digestion indicates that polyphenols in fruits and vegetables which bind to the PCW will be transported to the colon where they would be expected to be released by the action of cell wall degrading bacteria.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Hydrogen is known as a clean energy resource. The biological production of hydrogen has been attracting attention as an environmentally friendly processs that does not consume fossil fuels. Cellulosic plant and waste materials are potential resources for fermentative hydrogen production. Cellulose is a linear biopolymer of glucose molecules, connected by β-1,4-glycosidic bonds. Enzymatic hydrolysis of cellulose requires the presence of cellulase. The present study aimed to investigate the efficiency of acid pretreatment on ruminal fluid in order to enrich H2 producing bacteria consortia to enhance biohydrogen rate and substrate removal efficiency. In this study, fermentative hydrogen producers were enriched on cellulose (2g/L) in a modificated Del Nery medium (DNM) at 37ºC and initial pH 7.0 using rumen fluid (10% v/v) as inoculum. To increase the hydrogen production it was added cellulose (10mL) to the medium. The gas products (mainly H2 and CO2) was analyzed by gas chromatography (Shimadzu GC 2010) using a thermal conductivity detector. The volatile fatty acids and ethanol were also detected by GC using a flame ionization detector. Cellulose degradation was quantified by using the phenolsulfuric acid method. Analysis showed that the biogas produced from the anaerobic fermentation contained only hydrogen and carbon dioxide, without detectable methane after acid pretreatment test. On DNM the hydrogen production started with 4 h (5,3 x 105 mmol H2/L) of incubation, and the maximum H2 concentration was observed with 34 h (7,1 x 106 mmol H2/L) of incubation. During the process, it was observed a predominance of acetic acid and butyric acid as well as a low production of acetone, ethanol and nbutanol in all experimental phases. Butyrate accounted for more than 77% of total. As a result of the accumulation of volatile fatty acids (VFAs), the pH value in anaerobic digestion system was reduced to 4,0. On microscopy analyses there were observed rods with endospores. The batch anaerobic fermentation assays performed on anaerobic mixed inoculum from rumen fluid demonstrated the feasibility of H2 generation utilizing cellulose as substrate. Based on the results, it can be concluded that the acid treatment was efficient to inhibit the methanogenic archaea cells present in rumen fluid. The rumen fluid cells present a potential route in converting renewable biomass such as cellulose into hydrogen energy.
Resumo:
A nanocomposite based on bacterial cellulose (BC) and type I collagen (COL) was evaluated for in vitro bone regeneration. BC membranes were modified by glycine esterification followed by cross-linking of type I collagen employing 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. Collagen incorporation was studied by spectroscopy analysis. X-Ray diffraction showed changes in the BC crystallinity after collagen incorporation. The elastic modulus and tensile strength for BC-COL decreased, while the strain at failure showed a slight increase, even after sterilization, as compared to pristine BC. Swelling tests and contact angle measurements were also performed. Cell culture experiments performed with osteogenic cells were obtained by enzymatic digestion of newborn rat calvarium revealed similar features of cell morphology for cultures grown on both membranes. Cell viability/proliferation was not different between BC and BC-COL membranes at day 10 and 14. The high total protein content and ALP activity at day 17 in cells cultured on BC-COL indicate that this composite allowed the development of the osteoblastic phenotype in vitro. Thus, BC-COL should be considered as alternative biomaterial for bone tissue engineering.