982 resultados para camera motion
Resumo:
Camera motion estimation is one of the most significant steps for structure-from-motion (SFM) with a monocular camera. The normalized 8-point, the 7-point, and the 5-point algorithms are normally adopted to perform the estimation, each of which has distinct performance characteristics. Given unique needs and challenges associated to civil infrastructure SFM scenarios, selection of the proper algorithm directly impacts the structure reconstruction results. In this paper, a comparison study of the aforementioned algorithms is conducted to identify the most suitable algorithm, in terms of accuracy and reliability, for reconstructing civil infrastructure. The free variables tested are baseline, depth, and motion. A concrete girder bridge was selected as the "test-bed" to reconstruct using an off-the-shelf camera capturing imagery from all possible positions that maximally the bridge's features and geometry. The feature points in the images were extracted and matched via the SURF descriptor. Finally, camera motions are estimated based on the corresponding image points by applying the aforementioned algorithms, and the results evaluated.
Resumo:
[EN] In this paper we study a variational problem derived from a computer vision application: video camera calibration with smoothing constraint. By video camera calibration we meanto estimate the location, orientation and lens zoom-setting of the camera for each video frame taking into account image visible features. To simplify the problem we assume that the camera is mounted on a tripod, in such case, for each frame captured at time t , the calibration is provided by 3 parameters : (1) P(t) (PAN) which represents the tripod vertical axis rotation, (2) T(t) (TILT) which represents the tripod horizontal axis rotation and (3) Z(t) (CAMERA ZOOM) the camera lens zoom setting. The calibration function t -> u(t) = (P(t),T(t),Z(t)) is obtained as the minima of an energy function I[u] . In thIs paper we study the existence of minima of such energy function as well as the solutions of the associated Euler-Lagrange equations.
Resumo:
This paper presents different application scenarios for which the registration of sub-sequence reconstructions or multi-camera reconstructions is essential for successful camera motion estimation and 3D reconstruction from video. The registration is achieved by merging unconnected feature point tracks between the reconstructions. One application is drift removal for sequential camera motion estimation of long sequences. The state-of-the-art in drift removal is to apply a RANSAC approach to find unconnected feature point tracks. In this paper an alternative spectral algorithm for pairwise matching of unconnected feature point tracks is used. It is then shown that the algorithms can be combined and applied to novel scenarios where independent camera motion estimations must be registered into a common global coordinate system. In the first scenario multiple moving cameras, which capture the same scene simultaneously, are registered. A second new scenario occurs in situations where the tracking of feature points during sequential camera motion estimation fails completely, e.g., due to large occluding objects in the foreground, and the unconnected tracks of the independent reconstructions must be merged. In the third scenario image sequences of the same scene, which are captured under different illuminations, are registered. Several experiments with challenging real video sequences demonstrate that the presented techniques work in practice.
Resumo:
This paper presents a novel technique for reconstructing an outdoor sculpture from an uncalibrated image sequence acquired around it using a hand-held camera. The technique introduced here uses only the silhouettes of the sculpture for both motion estimation and model reconstruction, and no corner detection nor matching is necessary. This is very important as most sculptures are composed of smooth textureless surfaces, and hence their silhouettes are very often the only information available from their images. Besides, as opposed to previous works, the proposed technique does not require the camera motion to be perfectly circular (e.g., turntable sequence). It employs an image rectification step before the motion estimation step to obtain a rough estimate of the camera motion which is only approximately circular. A refinement process is then applied to obtain the true general motion of the camera. This allows the technique to handle large outdoor sculptures which cannot be rotated on a turntable, making it much more practical and flexible.
Resumo:
In this paper we present a segmentation algorithm to extract foreground object motion in a moving camera scenario without any preprocessing step such as tracking selected features, video alignment, or foreground segmentation. By viewing it as a curve fitting problem on advected particle trajectories, we use RANSAC to find the polynomial that best fits the camera motion and identify all trajectories that correspond to the camera motion. The remaining trajectories are those due to the foreground motion. By using the superposition principle, we subtract the motion due to camera from foreground trajectories and obtain the true object-induced trajectories. We show that our method performs on par with state-of-the-art technique, with an execution time speed-up of 10x-40x. We compare the results on real-world datasets such as UCF-ARG, UCF Sports and Liris-HARL. We further show that it can be used toper-form video alignment.
Resumo:
Calibration of a camera system is a necessary step in any stereo metric process. It correlates all cameras to a common coordinate system by measuring the intrinsic and extrinsic parameters of each camera. Currently, manual calibration of a camera system is the only way to achieve calibration in civil engineering operations that require stereo metric processes (photogrammetry, videogrammetry, vision based asset tracking, etc). This type of calibration however is time-consuming and labor-intensive. Furthermore, in civil engineering operations, camera systems are exposed to open, busy sites. In these conditions, the position of presumably stationary cameras can easily be changed due to external factors such as wind, vibrations or due to an unintentional push/touch from personnel on site. In such cases manual calibration must be repeated. In order to address this issue, several self-calibration algorithms have been proposed. These algorithms use Projective Geometry, Absolute Conic and Kruppa Equations and variations of these to produce processes that achieve calibration. However, most of these methods do not consider all constraints of a camera system such as camera intrinsic constraints, scene constraints, camera motion or varying camera intrinsic properties. This paper presents a novel method that takes all constraints into consideration to auto-calibrate cameras using an image alignment algorithm originally meant for vision based tracking. In this method, image frames are taken from cameras. These frames are used to calculate the fundamental matrix that gives epipolar constraints. Intrinsic and extrinsic properties of cameras are acquired from this calculation. Test results are presented in this paper with recommendations for further improvement.
Resumo:
The commercial far-range (>10m) infrastructure spatial data collection methods are not completely automated. They need significant amount of manual post-processing work and in some cases, the equipment costs are significant. This paper presents a method that is the first step of a stereo videogrammetric framework and holds the promise to address these issues. Under this method, video streams are initially collected from a calibrated set of two video cameras. For each pair of simultaneous video frames, visual feature points are detected and their spatial coordinates are then computed. The result, in the form of a sparse 3D point cloud, is the basis for the next steps in the framework (i.e., camera motion estimation and dense 3D reconstruction). A set of data, collected from an ongoing infrastructure project, is used to show the merits of the method. Comparison with existing tools is also shown, to indicate the performance differences of the proposed method in the level of automation and the accuracy of results.
Resumo:
This thesis examines a complete design framework for a real-time, autonomous system with specialized VLSI hardware for computing 3-D camera motion. In the proposed architecture, the first step is to determine point correspondences between two images. Two processors, a CCD array edge detector and a mixed analog/digital binary block correlator, are proposed for this task. The report is divided into three parts. Part I covers the algorithmic analysis; part II describes the design and test of a 32$\time $32 CCD edge detector fabricated through MOSIS; and part III compares the design of the mixed analog/digital correlator to a fully digital implementation.
Resumo:
A common problem in video surveys in very shallow waters is the presence of strong light fluctuations, due to sun light refraction. Refracted sunlight casts fast moving patterns, which can significantly degrade the quality of the acquired data. Motivated by the growing need to improve the quality of shallow water imagery, we propose a method to remove sunlight patterns in video sequences. The method exploits the fact that video sequences allow several observations of the same area of the sea floor, over time. It is based on computing the image difference between a given reference frame and the temporal median of a registered set of neighboring images. A key observation is that this difference will have two components with separable spectral content. One is related to the illumination field (lower spatial frequencies) and the other to the registration error (higher frequencies). The illumination field, recovered by lowpass filtering, is used to correct the reference image. In addition to removing the sunflickering patterns, an important advantage of the approach is the ability to preserve the sharpness in corrected image, even in the presence of registration inaccuracies. The effectiveness of the method is illustrated in image sets acquired under strong camera motion containing non-rigid benthic structures. The results testify the good performance and generality of the approach
Resumo:
When depicting both virtual and physical worlds, the viewer's impression of presence in these worlds is strongly linked to camera motion. Plausible and artist-controlled camera movement can substantially increase scene immersion. While physical camera motion exhibits subtle details of position, rotation, and acceleration, these details are often missing for virtual camera motion. In this work, we analyze camera movement using signal theory. Our system allows us to stylize a smooth user-defined virtual base camera motion by enriching it with plausible details. A key component of our system is a database of videos filmed by physical cameras. These videos are analyzed with a camera-motion estimation algorithm (structure-from-motion) and labeled manually with a specific style. By considering spectral properties of location, orientation and acceleration, our solution learns camera motion details. Consequently, an arbitrary virtual base motion, defined in any conventional animation package, can be automatically modified according to a user-selected style. In an animation package the camera motion base path is typically defined by the user via function curves. Another possibility is to obtain the camera path by using a mixed reality camera in motion capturing studio. As shown in our experiments, the resulting shots are still fully artist-controlled, but appear richer and more physically plausible.
Resumo:
En esta tesis se aborda la detección y el seguimiento automático de vehículos mediante técnicas de visión artificial con una cámara monocular embarcada. Este problema ha suscitado un gran interés por parte de la industria automovilística y de la comunidad científica ya que supone el primer paso en aras de la ayuda a la conducción, la prevención de accidentes y, en última instancia, la conducción automática. A pesar de que se le ha dedicado mucho esfuerzo en los últimos años, de momento no se ha encontrado ninguna solución completamente satisfactoria y por lo tanto continúa siendo un tema de investigación abierto. Los principales problemas que plantean la detección y seguimiento mediante visión artificial son la gran variabilidad entre vehículos, un fondo que cambia dinámicamente debido al movimiento de la cámara, y la necesidad de operar en tiempo real. En este contexto, esta tesis propone un marco unificado para la detección y seguimiento de vehículos que afronta los problemas descritos mediante un enfoque estadístico. El marco se compone de tres grandes bloques, i.e., generación de hipótesis, verificación de hipótesis, y seguimiento de vehículos, que se llevan a cabo de manera secuencial. No obstante, se potencia el intercambio de información entre los diferentes bloques con objeto de obtener el máximo grado posible de adaptación a cambios en el entorno y de reducir el coste computacional. Para abordar la primera tarea de generación de hipótesis, se proponen dos métodos complementarios basados respectivamente en el análisis de la apariencia y la geometría de la escena. Para ello resulta especialmente interesante el uso de un dominio transformado en el que se elimina la perspectiva de la imagen original, puesto que este dominio permite una búsqueda rápida dentro de la imagen y por tanto una generación eficiente de hipótesis de localización de los vehículos. Los candidatos finales se obtienen por medio de un marco colaborativo entre el dominio original y el dominio transformado. Para la verificación de hipótesis se adopta un método de aprendizaje supervisado. Así, se evalúan algunos de los métodos de extracción de características más populares y se proponen nuevos descriptores con arreglo al conocimiento de la apariencia de los vehículos. Para evaluar la efectividad en la tarea de clasificación de estos descriptores, y dado que no existen bases de datos públicas que se adapten al problema descrito, se ha generado una nueva base de datos sobre la que se han realizado pruebas masivas. Finalmente, se presenta una metodología para la fusión de los diferentes clasificadores y se plantea una discusión sobre las combinaciones que ofrecen los mejores resultados. El núcleo del marco propuesto está constituido por un método Bayesiano de seguimiento basado en filtros de partículas. Se plantean contribuciones en los tres elementos fundamentales de estos filtros: el algoritmo de inferencia, el modelo dinámico y el modelo de observación. En concreto, se propone el uso de un método de muestreo basado en MCMC que evita el elevado coste computacional de los filtros de partículas tradicionales y por consiguiente permite que el modelado conjunto de múltiples vehículos sea computacionalmente viable. Por otra parte, el dominio transformado mencionado anteriormente permite la definición de un modelo dinámico de velocidad constante ya que se preserva el movimiento suave de los vehículos en autopistas. Por último, se propone un modelo de observación que integra diferentes características. En particular, además de la apariencia de los vehículos, el modelo tiene en cuenta también toda la información recibida de los bloques de procesamiento previos. El método propuesto se ejecuta en tiempo real en un ordenador de propósito general y da unos resultados sobresalientes en comparación con los métodos tradicionales. ABSTRACT This thesis addresses on-road vehicle detection and tracking with a monocular vision system. This problem has attracted the attention of the automotive industry and the research community as it is the first step for driver assistance and collision avoidance systems and for eventual autonomous driving. Although many effort has been devoted to address it in recent years, no satisfactory solution has yet been devised and thus it is an active research issue. The main challenges for vision-based vehicle detection and tracking are the high variability among vehicles, the dynamically changing background due to camera motion and the real-time processing requirement. In this thesis, a unified approach using statistical methods is presented for vehicle detection and tracking that tackles these issues. The approach is divided into three primary tasks, i.e., vehicle hypothesis generation, hypothesis verification, and vehicle tracking, which are performed sequentially. Nevertheless, the exchange of information between processing blocks is fostered so that the maximum degree of adaptation to changes in the environment can be achieved and the computational cost is alleviated. Two complementary strategies are proposed to address the first task, i.e., hypothesis generation, based respectively on appearance and geometry analysis. To this end, the use of a rectified domain in which the perspective is removed from the original image is especially interesting, as it allows for fast image scanning and coarse hypothesis generation. The final vehicle candidates are produced using a collaborative framework between the original and the rectified domains. A supervised classification strategy is adopted for the verification of the hypothesized vehicle locations. In particular, state-of-the-art methods for feature extraction are evaluated and new descriptors are proposed by exploiting the knowledge on vehicle appearance. Due to the lack of appropriate public databases, a new database is generated and the classification performance of the descriptors is extensively tested on it. Finally, a methodology for the fusion of the different classifiers is presented and the best combinations are discussed. The core of the proposed approach is a Bayesian tracking framework using particle filters. Contributions are made on its three key elements: the inference algorithm, the dynamic model and the observation model. In particular, the use of a Markov chain Monte Carlo method is proposed for sampling, which circumvents the exponential complexity increase of traditional particle filters thus making joint multiple vehicle tracking affordable. On the other hand, the aforementioned rectified domain allows for the definition of a constant-velocity dynamic model since it preserves the smooth motion of vehicles in highways. Finally, a multiple-cue observation model is proposed that not only accounts for vehicle appearance but also integrates the available information from the analysis in the previous blocks. The proposed approach is proven to run near real-time in a general purpose PC and to deliver outstanding results compared to traditional methods.
Resumo:
Position estimation for planetary rovers has been typically limited to odometry based on proprioceptive measurements such as the integration of distance traveled and measurement of heading change. Here we present and compare two methods of online visual odometry suited for planetary rovers. Both methods use omnidirectional imagery to estimate motion of the rover. One method is based on robust estimation of optical flow and subsequent integration of the flow. The second method is a full structure-from-motion solution. To make the comparison meaningful we use the same set of raw corresponding visual features for each method. The dataset is an sequence of 2000 images taken during a field experiment in the Atacama desert, for which high resolution GPS ground truth is available.
Resumo:
Background: Pre-participation screening is commonly used to measure and assess potential intrinsic injury risk. The single leg squat is one such clinical screening measure used to assess lumbopelvic stability and associated intrinsic injury risk. With the addition of a decline board, the single leg decline squat (SLDS) has been shown to reduce ankle dorsiflexion restrictions and allowed greater sagittal plane movement of the hip and knee. On this basis, the SLDS has been employed in the Cricket Australia physiotherapy screening protocols as a measure of lumbopelvic control in the place of the more traditional single leg flat squat (SLFS). Previous research has failed to demonstrate which squatting technique allows for a more comprehensive assessment of lumbopelvic stability. Tenuous links are drawn between kinematics and hip strength measures within the literature for the SLS. Formal evaluation of subjective screening methods has also been suggested within the literature. Purpose: This study had several focal points namely 1) to compare the kinematic differences between the two single leg squatting conditions, primarily the five key kinematic variables fundamental to subjectively assess lumbopelvic stability; 2) determine the effect of ankle dorsiflexion range of motion has on squat kinematics in the two squat techniques; 3) examine the association between key kinematics and subjective physiotherapists’ assessment; and finally 4) explore the association between key kinematics and hip strength. Methods: Nineteen (n=19) subjects performed five SLDS and five SLFS on each leg while being filmed by an 8 camera motion analysis system. Four hip strength measures (internal/external rotation and abd/adduction) and ankle dorsiflexion range of motion were measured using a hand held dynamometer and a goniometer respectively on 16 of these subjects. The same 16 participants were subjectively assessed by an experienced physiotherapist for lumbopelvic stability. Paired samples t-tests were performed on the five predetermined kinematic variables to assess the differences between squat conditions. A Bonferroni correction for multiple comparisons was used which adjusted the significance value to p = 0.005 for the paired t-tests. Linear regressions were used to assess the relationship between kinematics, ankle range of motion and hip strength measures. Bivariate correlations between hip strength measures and kinematics and pelvic obliquity were employed to investigate any possible relationships. Results: 1) Significant kinematic differences between squats were observed in dominant (D) and non-dominant (ND) end of range hip external rotation (ND p = <0.001; D p = 0.004) and hip adduction kinematics (ND p = <0.001; D p = <0.001). With the mean angle, only the non-dominant leg observed significant differences in hip adduction (p = 0.001) and hip external rotation (p = <0.001); 2) Significant linear relationships were observed between clinical measures of ankle dorsiflexion and sagittal plane kinematic namely SLFS dominant ankle (p = 0.006; R2 = .429), SLFS non-dominant knee (p = 0.015; R2 = .352) and SLFS non-dominant ankle (p = 0.027; R2 = .305) kinematics. Only the dominant ankle (p = 0.020; R2 = .331) was found to have a relationship with the decline squat. 3) Strength measures had tenuous associations with the subjective assessments of lumbopelvic stability with no significant relationships being observed. 4) For the non-dominant leg, external rotation strength and abduction strength were found to be significantly correlated with hip rotation kinematics (Newtons r = 0.458 p = 0.049; Normalised for bodyweight: r = 0.469; p = 0.043) and pelvic obliquity (normalised for bodyweight: r = 0.498 p = 0.030) respectively for the SLFS only. No significant relationships were observed in the dominant leg for either squat condition. Some elements of the hip strength screening protocols had linear relationships with kinematics of the lower limb, particularly the sagittal plane movements of the knee and ankle. Strength measures had tenuous associations with the subjective assessments of lumbopelvic stability with no significant relationships being observed; Discussion: The key finding of this study illustrated that kinematic differences can occur at the hip without significant kinematic differences at the knee as a result of the introduction of a decline board. Further observations reinforce the role of limited ankle dorsiflexion range of motion on sagittal plane movement of the hip and knee and in turn multiplanar kinematics of the lower limb. The kinematic differences between conditions have clinical implications for screening protocols that employ frontal plane movement of the knee as a guide for femoral adduction and rotation. Subjects who returned stronger hip strength measurements also appeared to squat deeper as characterised by differences in sagittal plane kinematics of the knee and ankle. Despite the aforementioned findings, the relationship between hip strength and lower limb kinematics remains largely tenuous in the assessment of the lumbopelvic stability using the SLS. The association between kinematics and the subjective measures of lumbopelvic stability also remain tenuous between and within SLS screening protocols. More functional measures of hip strength are needed to further investigate these relationships. Conclusion: The type of SLS (flat or decline) should be taken into account when screening for lumbopelvic stability. Changes to lower limb kinematics, especially around the hip and pelvis, were observed with the introduction of a decline board despite no difference in frontal plane knee movements. Differences in passive ankle dorsiflexion range of motion yielded variations in knee and ankle kinematics during a self-selected single leg squatting task. Clinical implications of removing posterior ankle restraints and using the knee as a guide to illustrate changes at the hip may result in inaccurate screening of lumbopelvic stability. The relationship between sagittal plane lower limb kinematics and hip strength may illustrate that self-selected squat depth may presumably be a useful predictor of the lumbopelvic stability. Further research in this area is required.