926 resultados para biological nitrogen fixation
Resumo:
Two studies were conducted at the ISU Horticulture Station to evaluate potential limitations on yield and atmospheric nitrogen fixation by common bean (Phaseolus vulgaris L.). This legume is a food staple for small landholder farm families worldwide. But it has a limited capacity for nitrogen fixation and often yields only a fraction of its genetic potential. In these studies, we examined the dependence of pod filling on current assimilate supply, as well as the potential to improve nitrogen fixation using an inoculant shown to enhance biological nitrogen fixation under stressful conditions.
Resumo:
A Pseudosamanea guachapele (guachapele), leguminosa arbórea fixadora de nitrogênio, é uma alternativa para plantios florestais mistos nos trópicos. Como são escassas as informações sobre a espécie em plantios mistos de eucalipto em condições edafoclimáticas brasileiras, foi conduzido um experimento no qual objetivou-se avaliar a contribuição da fixação biológica de nitrogênio para a guachapele e a velocidade de decomposição e de liberação de nutrientes de folhas senescentes de eucalipto e guachapele (oriundas dos plantios puros e consorciado). A porcentagem de N derivado da atmosfera (% Ndfa) foi estimada comparando-se a abundância natural de 15N ( 15N, ) nos tecidos da guachapele com a observada nos tecidos do Eucalyptus grandis, espécie não fixadora, ambas com sete anos de idade. A constante de decomposição (k) e a meia-vida (t1/2) de serapilheira foram estimadas utilizando-se o modelo exponencial aplicado aos dados oriundos de coletas de litterbags. A estimativa da %Ndfa para guachapele, em condições de plantio puro, variou de 17 a 36%, enquanto que, em condições de plantio consorciado, foi de 35 a 60 %. A concentração de N nas folhas senescentes estava positivamente relacionada com a taxa de decomposição, sendo essa decrescente da guachapele para o eucalipto. A t1/2 dos resíduos diferiu significativamente (p < 0.05), sendo de 148, 185 e 218 dias para as folhas de guachapele, mistura das duas espécies e eucalipto, respectivamente. A liberação dos nutrientes (principalmente N, K e Mg) das folhas seguiu a mesma ordem da t1/2 devido à qualidade inicial das mesmas. Os resultados indicam que a guachapele pode beneficiar o plantio misto pela adição de N e por meio da intensificação da decomposição da serapilheira.
Resumo:
O objetivo deste trabalho foi a caracterização genética de quatro novas estirpes de Rhizobium e a avaliação de sua capacidade de fixação de N2 e nodulação, comparadas a estirpes comerciais e à população nativa de rizóbios de um Latossolo Vermelho. Dois experimentos foram conduzidos em blocos ao acaso, em casa de vegetação. No primeiro experimento, conduzido em tubetes com vermiculita, avaliaram-se a nodulação e a capacidade de fixação das novas estirpes, em comparação com as estirpes comerciais CIAT-899 e PRF-81 e com a população nativa do solo. Das colônias puras isoladas, extraiu-se o DNA genômico e realizou-se o seqüenciamento do espaço intergênico, para a caracterização genética das estirpes e da população nativa de rizóbios. O segundo experimento foi realizado em vasos com solo, para determinação da produtividade e da nodulação do feijoeiro, cultivar Pérola, com o uso das estirpes isoladamente ou em mistura com a PRF-81. A população nativa do solo foi identificada como Rhizobium sp. e se mostrou ineficiente na fixação de nitrogênio. Foram encontradas três espécies de Rhizobium entre as quatro novas estirpes. As estirpes LBMP-4BR e LBMP-12BR estão entre as que têm maior capacidade de nodulação e fixação de N2, e apresentam respostas diferenciadas quando misturadas à PRF-81.
Resumo:
Photosynthesis, biological nitrogen fixation, and carbon dioxide assimilation are three fundamental biological processes catalyzed by photosynthetic bacteria. In the present study, it is shown that mutant strains of the nonsulfur purple photosynthetic bacteria Rhodospirillum rubrum and Rhodobacter sphaeroides, containing a blockage in the primary CO2 assimilatory pathway, derepress the synthesis of components of the nitrogen fixation enzyme complex and abrogate normal control mechanisms. The absence of the Calvin–Benson–Bassham (CBB) reductive pentose phosphate CO2 fixation pathway removes an important route for the dissipation of excess reducing power. Thus, the mutant strains develop alternative means to remove these reducing equivalents, resulting in the synthesis of large amounts of nitrogenase even in the presence of ammonia. This response is under the control of a global two-component signal transduction system previously found to regulate photosystem biosynthesis and the transcription of genes required for CO2 fixation through the CBB pathway and alternative routes. In addition, this two-component system directly controls the ability of these bacteria to grow under nitrogen-fixing conditions. These results indicate that there is a molecular link between the CBB and nitrogen fixation process, allowing the cell to overcome powerful control mechanisms to remove excess reducing power generated by photosynthesis and carbon metabolism. Furthermore, these results suggest that the two-component system integrates the expression of genes required for the three processes of photosynthesis, nitrogen fixation, and carbon dioxide fixation.
Resumo:
Inoculation of legumes with rhizobia is fundamental to sustainable productivity of Australian agriculture. The National Rhizobium Program has specific aims of sustaining and increasing Nitrogen fixation by legumes in Australian agriculture.
Resumo:
The biological reduction of atmospheric N-2 to ammonium (nitrogen fixation) provides about 65% of the biosphere's available nitrogen. Most of this ammonium is contributed by legume rhizobia symbioses(1), which are initiated by the infection of legume hosts by bacteria (rhizobia), resulting in formation of root nodules. Within the nodules, rhizobia are found as bacteroids, which perform the nitrogen fixation: to do this, they obtain sources of carbon and energy from the plant, in the form of dicarboxylic acids(2,3). It has been thought that, in return, bacteroids simply provide the plant with ammonium. But here we show that a more complex amino-acid cycle is essential for symbiotic nitrogen fixation by Rhizobium in pea nodules. The plant provides amino acids to the bacteroids, enabling them to shut down their ammonium assimilation. In return, bacteroids act like plant organelles to cycle amino acids back to the plant for asparagine synthesis. The mutual dependence of this exchange prevents the symbiosis being dominated by the plant, and provides a selective pressure for the evolution of mutualism.
Resumo:
Abstract Background The metabolic capacity for nitrogen fixation is known to be present in several prokaryotic species scattered across taxonomic groups. Experimental detection of nitrogen fixation in microbes requires species-specific conditions, making it difficult to obtain a comprehensive census of this trait. The recent and rapid increase in the availability of microbial genome sequences affords novel opportunities to re-examine the occurrence and distribution of nitrogen fixation genes. The current practice for computational prediction of nitrogen fixation is to use the presence of the nifH and/or nifD genes. Results Based on a careful comparison of the repertoire of nitrogen fixation genes in known diazotroph species we propose a new criterion for computational prediction of nitrogen fixation: the presence of a minimum set of six genes coding for structural and biosynthetic components, namely NifHDK and NifENB. Using this criterion, we conducted a comprehensive search in fully sequenced genomes and identified 149 diazotrophic species, including 82 known diazotrophs and 67 species not known to fix nitrogen. The taxonomic distribution of nitrogen fixation in Archaea was limited to the Euryarchaeota phylum; within the Bacteria domain we predict that nitrogen fixation occurs in 13 different phyla. Of these, seven phyla had not hitherto been known to contain species capable of nitrogen fixation. Our analyses also identified protein sequences that are similar to nitrogenase in organisms that do not meet the minimum-gene-set criteria. The existence of nitrogenase-like proteins lacking conserved co-factor ligands in both diazotrophs and non-diazotrophs suggests their potential for performing other, as yet unidentified, metabolic functions. Conclusions Our predictions expand the known phylogenetic diversity of nitrogen fixation, and suggest that this trait may be much more common in nature than it is currently thought. The diverse phylogenetic distribution of nitrogenase-like proteins indicates potential new roles for anciently duplicated and divergent members of this group of enzymes.
Resumo:
[EN] Marine N2 fixing microorganisms, termed diazotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N2) to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems 5 and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic cell counts or qPCR 10 assays targeting the nifH genes) and N2 fixation rates. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. The database is limited spatially, lacking large regions of the ocean especially in the Indian Ocean. The data are approximately log-normal distributed, and large variances exist in most sub-databases with non-zero values differing 5 to 8 orders of magnitude. 15 Lower mean N2 fixation rate was found in the North Atlantic Ocean than the Pacific Ocean. Reporting the geometric mean and the range of one geometric standard error below and above the geometric mean, the pelagic N2 fixation rate in the global ocean is estimated to be 62 (53–73) TgNyr−1 and the pelagic diazotrophic biomass in the global ocean is estimated to be 4.7 (2.3–9.6) TgC from cell counts and to 89 (40–20 200) TgC from nifH-based abundances. Uncertainties related to biomass conversion factors can change the estimate of geometric mean pelagic diazotrophic biomass in the global ocean by about ±70 %. This evolving database can be used to study spatial and temporal distributions and variations of marine N2 fixation, to validate geochemical estimates and to parameterize and validate biogeochemical models. The database is 25 stored in PANGAEA (http://doi.pangaea.de/10.1594/PANGAEA.774851).
Resumo:
The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. The present collection presents the original data sets used to compile Global distributions of diazotrophs abundance, biomass and nitrogen fixation rates
Resumo:
Dissolution of anthropogenic CO(2) increases the partial pressure of CO(2) (pCO(2)) and decreases the pH of seawater. The rate of Fe uptake by the dominant N(2)-fixing cyanobacterium Trichodesmium declines as pH decreases in metal-buffered medium. The slower Fe-uptake rate at low pH results from changes in Fe chemistry and not from a physiological response of the organism. Contrary to previous observations in nutrient-replete media, increasing pCO(2)/decreasing pH causes a decrease in the rates of N(2) fixation and growth in Trichodesmium under low-Fe conditions. This result was obtained even though the bioavailability of Fe was maintained at a constant level by increasing the total Fe concentration at low pH. Short-term experiments in which pCO(2) and pH were varied independently showed that the decrease in N(2) fixation is caused by decreasing pH rather than by increasing pCO(2) and corresponds to a lower efficiency of the nitrogenase enzyme. To compensate partially for the loss of N(2) fixation efficiency at low pH, Trichodesmium synthesizes additional nitrogenase. This increase comes partly at the cost of down-regulation of Fe-containing photosynthetic proteins. Our results show that although increasing pCO(2) often is beneficial to photosynthetic marine organisms, the concurrent decreasing pH can affect primary producers negatively. Such negative effects can occur both through chemical mechanisms, such as the bioavailability of key nutrients like Fe, and through biological mechanisms, as shown by the decrease in N(2) fixation in Fe-limited Trichodesmium.
Resumo:
Nitrogen fixation, the biological reduction of dinitrogen gas (N2) to ammonium (NH4+), is quantitatively the most important external source of new nitrogen (N) to the open ocean. Classically, the ecological niche of oceanic N2 fixers (diazotrophs) is ascribed to tropical oligotrophic surface waters, often depleted in fixed N, with a diazotrophic community dominated by cyanobacteria. Although this applies for large areas of the ocean, biogeochemical models and phylogenetic studies suggest that the oceanic diazotrophic niche may be much broader than previously considered, resulting in major implications for the global N-budget. Here, we report on the composition, distribution and abundance of nifH, the functional gene marker for N2 fixation. Our results show the presence of eight clades of diazotrophs in the oxygen minimum zone (OMZ) off Peru. Although proteobacterial clades dominated overall, two clusters affiliated to spirochaeta and archaea were identified. N2 fixation was detected within OMZ waters and was stimulated by the addition of organic carbon sources supporting the view that non-phototrophic diazotrophs were actively fixing dinitrogen. The observed co-occurrence of key functional genes for N2 fixation, nitrification, anammox and denitrification suggests that a close spatial coupling of N-input and N-loss processes exists in the OMZ off Peru. The wide distribution of diazotrophs throughout the water column adds to the emerging view that the habitat of marine diazotrophs can be extended to low oxygen/high nitrate areas. Furthermore, our statistical analysis suggests that NO2- and PO43- are the major factors affecting diazotrophic distribution throughout the OMZ. In view of the predicted increase in ocean deoxygenation resulting from global warming, our findings indicate that the importance of OMZs as niches for N2 fixation may increase in the futur