249 resultados para biaxial
Resumo:
Biological tissues are subjected to complex loading states in vivo and in order to define constitutive equations that effectively simulate their mechanical behaviour under these loads, it is necessary to obtain data on the tissue's response to multiaxial loading. Single axis and shear testing of biological tissues is often carried out, but biaxial testing is less common. We sought to design and commission a biaxial compression testing device, capable of obtaining repeatable data for biological samples. The apparatus comprised a sealed stainless steel pressure vessel specifically designed such that a state of hydrostatic compression could be created on the test specimen while simultaneously unloading the sample along one axis with an equilibrating tensile pressure. Thus a state of equibiaxial compression was created perpendicular to the long axis of a rectangular sample. For the purpose of calibration and commissioning of the vessel, rectangular samples of closed cell ethylene vinyl acetate (EVA) foam were tested. Each sample was subjected to repeated loading, and nine separate biaxial experiments were carried out to a maximum pressure of 204 kPa (30 psi), with a relaxation time of two hours between them. Calibration testing demonstrated the force applied to the samples had a maximum error of 0.026 N (0.423% of maximum applied force). Under repeated loading, the foam sample demonstrated lower stiffness during the first load cycle. Following this cycle, an increased stiffness, repeatable response was observed with successive loading. While the experimental protocol was developed for EVA foam, preliminary results on this material suggest that this device may be capable of providing test data for biological tissue samples. The load response of the foam was characteristic of closed cell foams, with consolidation during the early loading cycles, then a repeatable load-displacement response upon repeated loading. The repeatability of the test results demonstrated the ability of the test device to provide reproducible test data and the low experimental error in the force demonstrated the reliability of the test data.
Resumo:
Analytical and computational models of the intervertebral disc (IVD) are commonly employed to enhance understanding of the biomechanics of the human spine and spinal motion segments. The accuracy of these models in predicting physiological behaviour of the spine is intrinsically reliant on the accuracy of the material constitutive representations employed to represent the spinal tissues. There is a paucity of detailed mechanical data describing the material response of the reinforcedground matrix in the anulus fibrosus of the IVD. In the present study, the ‘reinforcedground matrix’ was defined as the matrix with the collagen fibres embedded but not actively bearing axial load, thus incorporating the contribution of the fibre-fibre and fibre-matrix interactions. To determine mechanical parameters for the anulus ground matrix, mechanical tests were carried out on specimens of ovine anulus, under unconfined uniaxial compression, simple shear and biaxial compression. Test specimens of ovine anulus fibrosus were obtained with an adjacent layer of vertebral bone/cartilage on the superior and inferior specimen surface. Specimen geometry was such that there were no continuous collagen fibres coupling the two endplates. Samples were subdivided according to disc region - anterior, lateral and posterior - to determine the regional inhomogeneity in the anulus mechanical response. Specimens were loaded at a strain rate sufficient to avoid fluid outflow from the tissue and typical stress-strain responses under the initial load application and under repeated loading were determined for each of the three loading types. The response of the anulus tissue to the initial and repeated load cycles was significantly different for all load types, except biaxial compression in the anterior anulus. Since the maximum applied strain exceeded the damage strain for the tissue, experimental results for repeated loading reflected the mechanical ability of the tissue to carry load, subsequent to the initiation of damage. To our knowledge, this is the first study to provide experimental data describing the response of the ‘reinforcedground matrix’ to biaxial compression. Additionally, it is novel in defining a study objective to determine the regionally inhomogeneous response of the ‘reinforcedground matrix’ under an extensive range of loading conditions suitable for mechanical characterisation of the tissue. The results presented facilitate the development of more detailed and comprehensive constitutive descriptions for the large strain nonlinear elastic or hyperelastic response of the anulus ground matrix.
Resumo:
To analyse mechanotransduction resulting from tensile loading under defined conditions, various devices for in vitro cell stimulation have been developed. This work aimed to determine the strain distribution on the membrane of a commercially available device and its consistency with rising cycle numbers, as well as the amount of strain transferred to adherent cells. The strains and their behaviour within the stimulation device were determined using digital image correlation (DIC). The strain transferred to cells was measured on eGFP-transfected bone marrow-derived cells imaged with a fluorescence microscope. The analysis was performed by determining the coordinates of prominent positions on the cells, calculating vectors between the coordinates and their length changes with increasing applied tensile strain. The stimulation device was found to apply homogeneous (mean of standard deviations approx. 2% of mean strain) and reproducible strains in the central well area. However, on average, only half of the applied strain was transferred to the bone marrow-derived cells. Furthermore, the strain measured within the device increased significantly with an increasing number of cycles while the membrane's Young's modulus decreased, indicating permanent changes in the material during extended use. Thus, strain magnitudes do not match the system readout and results require careful interpretation, especially at high cycle numbers.
Resumo:
We demonstrate the first biaxial fiber Bragg grating (FBG) accelerometer using axial and transverse forces. An inertial object is fixed at the middle of two FBGs inscribed in one fiber. The difference between the resonant wavelengths of the two FBGs can distinguish the acceleration in the axial direction, while being insensitive in the transverse direction. The average of the resonant wavelengths of the two FBGs can distinguish the acceleration in the transverse direction, while being insensitive in the axial direction. In the experiments, when the transverse direction was vertical, the crest-to-trough sensitivity at 5 Hz and resonant frequency of the average were 0.545 nm/g and 34.42 Hz, respectively. When the axial direction was vertical, those of the difference were 0.0454 nm/g and 900 Hz, respectively. For each FBG, the crest-to-trough sensitivity at 5 Hz and resonant frequency in the transverse/vertical direction were 24 and 1/26 times those in the axial/vertical direction, respectively.
Resumo:
The problem of misfit (interference or clearance) pin in a large orthotropic plate was solved earlier by the authors for biaxial loading in the principal directions of orthotropy. Here, a more general case of arbitrarily oriented loading is considered. The most important aspect of the problem studied is the partial contact at the pin-hole interface. The solution is obtained by extending the use of ‘inverse technique’ which was successfully applied earlier by the authors to problems of pins in isotropic and orthotropic domains. The loss of symmetry because of the arbitrary orientation of loading makes the problem more complex. Additional parameters are then involved in the inversion of the problem for the solution. Numerical results are presented primarily for a smooth interference fit pin in a typical orthotropic plate.
Resumo:
The plane problem of two dissimilar materials, bonded together and containing a crack along their common interface, which were subjected to a biaxial load at infinity, is examined by giving a closed-form expression for the first stress invariant of the normal stresses, which is equally valid everywhere, near to, and far from, the crack-tip region. This exact expression for the first-stress invariant is compared by constructing the respective isopachic-fringe patterns, to the approximate expression with non-singular terms, due to the biaxiality factor, for the same quantity. Significant differences between respective isopachic-patterns were found and their dependence on the elastic properties of both materials and the applied loads was demonstrated. The relative errors between the computedK I - andK II -components by using the approximate expression for the first stress-invariant and the accurate one, derived from closed-form solution along either isopachic-fringes or along circles and radii from the crack-tip have been given, indicating in some cases large discrepancies between exact and approximate solutions.
Resumo:
Ultraviolet radiation has been generated by tangentially phase-matched sum-frequency mixing in biaxial L-arginine phosphate (LAP) crystal for the first time using Nd:YAG output at 1064 nm and Rh 6G dye laser output at 560 nm as the two input sources. Characterization has also been made of such a cheap, biaxial crystal for its possible use in devices for tangentially phase-matched short wavelength generation. If the crystal is of proper cut, thickness and quality so that its maximum capability can be exploited it can replace the potassium dihydrogen phosphate (KDP) group of crystals for various applications.
Resumo:
We have investigated the effect of biaxial strain on local electrical/electronic properties in thin films of La0.7Ca0.3MnO3 with varying degrees of biaxial strain in them. The local electrical properties were investigated as a function of temperature by scanning tunneling spectroscopy (STS) and scanning tunneling potentiometry (STP), along with the bulk probe like conductance fluctuations.The results indicate a positive correlation between the lattice mismatch biaxial strain and the local electrical/electronic inhomogenities observed in the strained sample. This is plausible since the crystal structure of the manganites interfere rather strongly with the magnetic/electronic degrees of freedom. Thus even a small imbalance (biaxial strain) can induce significant changes in the electrical properties of the system.
Resumo:
In this paper, the conformal mapping method was adopted to solve the problem of an infinite plate containing a central lip-shaped crack subjected to remote biaxial loading. A kind of leaf-shaped configuration was also constructed in order to solve the problem. The analytical result showed that the singularity order of the stress field at the tip of a lip-shaped crack remains -1/2, despite the difference in notch-crack width.
Resumo:
A series of experiments have been conducted on cruciform specimens to investigate fatigue crack growth from circular notches under high levels of biaxial stress. Two stress levels (Δσ1= 380 and 560 MPa) and five stress biaxialities (λ=+1.0, +0.5, 0, −0.5 and −1.0; where λ=σ2/σ1 were adopted in the fatigue tests in type 316 stainless steel having a monotonic yield strength of 243 MPa. The results reveal that fatigue crack growth rates are markedly influenced by both the stress amplitude and the stress biaxiality. A modified model has been developed to describe fatigue crack growth under high levels of biaxial stress.
Resumo:
In this work, a study of the nematic (N)-isotropic (I) phase transition has been made in a series of odd non-symmetric liquid crystal dimers, the alpha-(4-cyanobiphenyl-4'-yloxy)-omega-(1-pyrenimine-benzylidene-4'-oxy) alkanes, by means of accurate calorimetric and dielectric measurements. These materials are potential candidates to present the elusive biaxial nematic (N-B) phase, as they exhibit both molecular biaxiality and flexibility. According to the theory, the uniaxial nematic (N-U)-isotropic (I) phase transition is first-order in nature, whereas the N-B-I phase transition is second-order. Thus, a fine analysis of the critical behavior of the N-I phase transition would allow us to determine the presence or not of the biaxial nematic phase and understand how the molecular biaxiality and flexibility of these compounds influences the critical behavior of the N-I phase transition.
Resumo:
An Ho3+-doped YAlO3 (Ho : YAP) single crystal has been grown by the Czochralski technique. The polarized absorption spectra, polarized fluorescence spectra and fluorescence decay curve of the crystal are measured at room temperature. The spectroscopic parameters are calculated based on Judd-Ofelt theory, and the effective phenomenological intensity parameters Omega(2,eff), Omega(4,eff) and Omega(6,eff) are obtained to be 2.89 x 10(-20), 2.92 x 10(-20) and 1.32 x 10(-20) cm(2), respectively. The room-temperature fluorescence lifetime of the Ho3+ 5I(7) -> I-5(8) transition is measured to be 8.1 ms. Values of the absorption and emission cross-sections with different polarizations are presented for the I-5(7) manifold, and the polarized gain cross-section curves are also provided and discussed.
Resumo:
This study investigates the optical properties and microstructure of Ta2O5 film deposited with the glancing angle deposition technique. The tilted nanocolumn microstructure, examined with scanning electron microscopy, induces the optical anisotropy of thin film. The optical properties of thin film are characterized with an inverse synthesis method. Based on the Cauchy model, the dispersion equations of optical constants of film are determined from the transmittance spectra measured at normal and oblique incidence over 400-800 nm. The starting values derived with an envelope method quicken the optimization process greatly. The dispersion of the principal indices N-1, N-2, and N-3 and the thickness d of thin film are presented statistically. A good agreement between the measured optical properties and theoretical calculation is obtained, which validates the model established for thin film produced by glancing angle deposition. (C) 2008 Optical Society of America