950 resultados para benthic algal communities


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of stress on both microalgal and macroalgal communities are considered. On one hand the contrasting approaches of studies of these two communities reflect intrinsic differences in plant size, longevity and ease of handling. On the other hand they reveal that biological monitoring of the potentially deleterious effects of man's activities has focused largely on freshwater environments in which macroalgae only occasionally dominate. Large conspicuous plants can be readily investigated as individuals, whereas it is virtually impossible to trace effects of stress on an individual cell of a vegetatively-reproducing microalga; a population approach is almost inevitably necessary. However, rapid turnover rates, a spectrum of ecological characteristics distributed between many taxa, and the potential for statistical analysis, have facilitated the use of microalgae in environmental impact studies. Failure to extend such investigations into marine systems rests as much on man's ability to ignore environmental deterioration until it affects his quality of life as on the visual dominance of seaweeds around our coasts. However, large gaps remain in our knowledge of both large and small algae; some reported community changes over time are suspect, and the causes of even blatant changes are not always apparent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecological responses to dam construction are poorly understood, especially for downstream benthic algal communities. We examined the responses of benthic algal communities in downstream reaches of a tributary of the Xiangxi River, China, to the construction of a small run-of-river dam. From February 2003 to August 2006, benthic algae, chemical factors, and habitat characteristics were monitored upstream and downstream of the dam site. This period spanned 6 mo before dam construction and 37 mo after dam construction. Benthic algal sampling yielded 199 taxa in 59 genera that belonged to Bacillariophyta, Chlorophyta, and Cyanophyta. Some physical factors (flow velocity, water depth, and channel width) and 3 algal metrics (diatom species richness, Margalef diversity, and % erect individuals) were significantly affected by the dam construction, whereas chemical factors (e.g., NH4-N, total N, SiO2) were not. Nonmetric multidimensional scaling (NMS) ordinations showed that overall algal assemblage structure downstream of the dam sites was similar to that of upstream control sites before dam construction and for 1 year after dam construction (p > 0.05). However, sites belonging to upstream and downstream reaches were well separated on NMS axis 1 during the 2(nd) and 3(rd) years after dam construction. Our results suggest that impacts of dam construction on benthic algal communities took 2 to 3 y to emerge. Further development of a complete set of indicators is needed to address the impact of small-dam construction. Our observations underscore the need for additional studies that quantify ecological responses to dam construction over longer time spans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Owing to anthropogenic emissions, atmospheric concentrations of carbon dioxide could almost double between 2006 and 2100 according to business-as-usual carbon dioxide emission scenarios. Because the ocean absorbs carbon dioxide from the atmosphere, increasing atmospheric carbon dioxide concentrations will lead to increasing dissolved inorganic carbon and carbon dioxide in surface ocean waters, and hence acidification and lower carbonate saturation states. As a consequence, it has been suggested that marine calcifying organisms, for example corals, coralline algae, molluscs and foraminifera, will have difficulties producing their skeletons and shells at current rates, with potentially severe implications for marine ecosystems, including coral reefs. Here we report a seven-week experiment exploring the effects of ocean acidification on crustose coralline algae, a cosmopolitan group of calcifying algae that is ecologically important in most shallowwater habitats. Six outdoor mesocosms were continuously supplied with sea water from the adjacent reef and manipulated to simulate conditions of either ambient or elevated seawater carbon dioxide concentrations. The recruitment rate and growth of crustose coralline algae were severely inhibited in the elevated carbon dioxide mesocosms. Our findings suggest that ocean acidification due to human activities could cause significant change to benthic community structure in shallow-warm-water carbonate ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Owing to anthropogenic emissions, atmospheric concentrations of carbon dioxide could almost double between 2006 and 2100 according to business-as-usual carbon dioxide emission scenarios. Because the ocean absorbs carbon dioxide from the atmosphere, increasing atmospheric carbon dioxide concentrations will lead to increasing dissolved inorganic carbon and carbon dioxide in surface ocean waters, and hence acidification and lower carbonate saturation states. As a consequence, it has been suggested that marine calcifying organisms, for example corals, coralline algae, molluscs and foraminifera, will have difficulties producing their skeletons and shells at current rates, with potentially severe implications for marine ecosystems, including coral reefs. Here we report a seven-week experiment exploring the effects of ocean acidification on crustose coralline algae, a cosmopolitan group of calcifying algae that is ecologically important in most shallowwater habitats. Six outdoor mesocosms were continuously supplied with sea water from the adjacent reef and manipulated to simulate conditions of either ambient or elevated seawater carbon dioxide concentrations. The recruitment rate and growth of crustose coralline algae were severely inhibited in the elevated carbon dioxide mesocosms. Our findings suggest that ocean acidification due to human activities could cause significant change to benthic community structure in shallow-warm-water carbonate ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the spatial extent of nitrogen (N) and phosphorus (P) limitation of each of the major benthic primary producer groups in Florida Bay (seagrass, epiphytes, macroalgae, and benthic microalgae) and characterized the shifts in primary producer community composition following nutrient enrichment. We established 24 permanent 0.25-m2 study plots at each of six sites across Florida Bay and added N and P to the sediments in a factorial design for 18 mo. Tissue nutrient content of the turtlegrass Thalassia testudinum revealed a spatial pattern in P limitation, from severe limitation in the eastern bay (N:P > 96:1), moderate limitation in two intermediate sites (approximately 63:1), and balanced with N availability in the western bay (approximately 31:1). P addition increased T. testudinum cover by 50-75% and short-shoot productivity by up to 100%, but only at the severely P-limited sites. At sites with an ambient N:P ratio suggesting moderate P limitation, few seagrass responses to nutrients occurred. Where ambient T. testudinum tissue N:P ratios indicated N and P availability was balanced, seagrass was not affected by nutrient addition but was strongly influenced by disturbance (currents, erosion). Macroalgal and epiphytic and benthic microalgal biomass were variable between sites and treatments. In general, there was no algal overgrowth of the seagrass in enriched conditions, possibly due to the strength of seasonal influences on algal biomass or regulation by grazers. N addition had little effect on any benthic primary producers throughout the bay. The Florida Bay benthic primary producer community was P limited, but P-induced alterations of community structure were not uniform among primary producers or across Florida Bay and did not always agree with expected patterns of nutrient limitation based on stoichiometric predictions from field assays of T. testudinum tissue N:P ratios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report is the final product of a two-year study conducted for the Office, Chief of Engineers, by the Moss Landing Marine Laboratories, Moss Landing, California, under Contract No. DACW39-74-C-OI51 with the Environmental Effects Laboratory (EEL), U. S. Army Engineer Waterways Experiment Station (WES), Yicksburg, Mississippi. (PDF contains 192 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Samples from stone surfaces were collected in pools within four unpolluted hillstreams (two shaded and two unshaded) in monsoonal Hong Kong (lat. 23 degrees N) to elucidate the extent of spatial (within and among streams) and temporal (seasonal) variations in algal biomass and assemblage composition. Sampling continued for over 12 months, incorporating the dry season when streams were at baseflow, and the wet season when spates were frequent. We anticipated that algal biomass would be lower in shaded streams and during the wet season, with associated seasonal differences in assemblage composition or relative abundance of different growth forms (e. g. erect versus prostrate). Benthic chlorophyll a (a proxy for algal biomass) varied among streams from an annual mean of 11.0-22.3 mg m(-2). Dry-season standing stocks were 18% higher than during the wet season when spate-induced disturbance reduced algal standing stocks. Algal biomass varied significantly at the stream scale, but not at the pool scale, and was lower in unshaded streams, where standing stocks may have been limited by high densities of algivorous balitorid loaches (mainly Pseudogastromyzon myersi). An overriding effect of grazers on algal biomass could also have reduced variations resulting from spate-induced disturbance. Significant differences in assemblage composition among streams, which were dominated by diatoms and cyanobacteria (totally 82 taxa) were not systematically related to shading conditions. Seasonal variations in algal assemblages were statistically significant but rather minor, and did not involve major shifts in composition or growth form caused by spate-induced disturbance. The abundance of filamentous cyanobacteria in all the streams may have been due to 'gardening' by balitorid loaches that removed erect or stalked diatoms and favoured cyanobacteria that persist through basal regeneration of filaments. This explanation requires validation through manipulative experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benthic communities in tributary-mainstem networks might interact via downstream drift of invertebrates or material from tributaries and adult dispersal from the mainstem. Depending on the strength of these interactions, mainstem downstream communities are expected to be more similar to tributary communities due to drift or habitat alteration. Communities not connected by flow are expected to be similar due to adult dispersal but decreasing in similarity with distance from the mainstem. We investigated interactions between invertebrate communities of a 7th order river and 5th order tributary by comparing benthic community structure in the river upstream and downstream of the tributary confluence and upstream in the tributary. Non-metric multidimensional scaling showed invertebrate communities and habitat traits from river locations directly downstream of the tributary clustered tightly, intermediate between tributary and mid-channel river locations. In addition, Bray-Curtis dissimilarity increased between the mainstem and tributary with distance upstream in the tributary. Our results indicate that similarities between mainstem and tributary communities are potentially caused by direct mass effects from tributary to downstream mainstem communities by invertebrate drift and indirect mass effects by habitat restructuring via material delivery from the tributary, as well as potential effects of adult dispersal from the river on proximal tributary communities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benthic foraminiferal assemblages from northeast Atlantic DSDP Sites 609, 610, and 611 have been interpreted with reference to modern assemblages known to be linked with the overlying bottom-water masses. It is shown that the water masses in the late Miocene to Pleistocene were similar to those of today. The distribution of the water masses changed with time, however. Antarctic Bottom Water ("AABW"), which at present is restricted to the area south of the Azores, reached as far north as the Gibbs Fracture Zone in the early Pliocene. Increased production of North Atlantic Deep Water in the late Pliocene displaced the AABW to the south

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coralline algae are susceptible to the changes in the seawater carbonate system associated with ocean acidification (OA). However, the coastal environments in which corallines grow are subject to large daily pH fluctuations which may affect their responses to OA. Here, we followed the growth and development of the juvenile coralline alga Arthrocardia corymbosa, which had recruited into experimental conditions during a prior experiment, using a novel OA laboratory culture system to simulate the pH fluctuations observed within a kelp forest. Microscopic life history stages are considered more susceptible to environmental stress than adult stages; we compared the responses of newly recruited A. corymbosa to static and fluctuating seawater pH with those of their field-collected parents. Recruits were cultivated for 16 weeks under static pH 8.05 and 7.65, representing ambient and 4*preindustrial pCO2 concentrations, respectively, and two fluctuating pH treatments of daily (daytime pH = 8.45, night-time pH = 7.65) and daily (daytime pH = 8.05, night-time pH = 7.25). Positive growth rates of new recruits were recorded in all treatments, and were highest under static pH 8.05 and lowest under fluctuating pH 7.65. This pattern was similar to the adults' response, except that adults had zero growth under fluctuating pH 7.65. The % dry weight of MgCO3 in calcite of the juveniles was reduced from 10% at pH 8.05 to 8% at pH 7.65, but there was no effect of pH fluctuation. A wide range of fleshy macroalgae and at least 6 species of benthic diatoms recruited across all experimental treatments, from cryptic spores associated with the adult A. corymbosa. There was no effect of experimental treatment on the growth of the benthic diatoms. On the community level, pH-sensitive species may survive lower pH in the presence of diatoms and fleshy macroalgae, whose high metabolic activity may raise the pH of the local microhabitat.