913 resultados para artificial immune system
Resumo:
In this paper, a method for the tuning the membership functions of a Mamdani type Fuzzy Logic Controller (FLC) using the Clonal Selection Algorithm(CSA) a model of the Artificial Immune System(AIS) paradigm is examined. FLC's are designed for two problems, firstly the linear cart centering problem and secondly the highly nonlinear inverted pendulum problem. The FLC tuned by AIS is compared with FLC tuned by GA. In order to check the robustness of the designed PLC's white noise was added to the system, further, the masses of the cart and the length and mass of the pendulum are changed. The PLC's were also tested in the presence of faulty rules. Finally, Kruskal Wallis test was performed to compare the performance of the GA and AIS. An insight into the algorithms are also given by studying the effect of the important parameters of GA and AIS.
Resumo:
This paper presents a new hierarchical clustering algorithm for crop stage classification using hyperspectral satellite image. Amongst the multiple benefits and uses of remote sensing, one of the important application is to solve the problem of crop stage classification. Modern commercial imaging satellites, owing to their large volume of satellite imagery, offer greater opportunities for automated image analysis. Hence, we propose a unsupervised algorithm namely Hierarchical Artificial Immune System (HAIS) of two steps: splitting the cluster centers and merging them. The high dimensionality of the data has been reduced with the help of Principal Component Analysis (PCA). The classification results have been compared with K-means and Artificial Immune System algorithms. From the results obtained, we conclude that the proposed hierarchical clustering algorithm is accurate.
Resumo:
M. Neal, An Artificial Immune System for Continuous Analysis of Time-Varying Data, in Proceedings of the 1st International Conference on Artificial Immune Systems (ICARIS), 2002, eds J Timmis and P J Bentley, volume 1, pages 76-85,
Resumo:
Timmis J and Neal M J. An artificial immune system for data analysis. In Proceedings of 3rd international workshop on information processing in cells and tissues (IPCAT), Indianapolis, U.S.A., 1999.
Resumo:
Timmis J and Neal M J. A resource limited artificial immune system for data analysis. In Proceedings of ES2000 - Research and Development of Intelligent Systems, pages 19-32, Cambrige, U.K., 2000. Springer.
Resumo:
Timmis J and Neal M J. Investigating the evolution and stability of a resource limited artificial immune system. In Proceedings of GECCO - special workshop on artificial immune systems, pages 40-41. AAAI press, 2000.
Resumo:
Artificial Immune Systems have been used successfully to build recommender systems for film databases. In this research, an attempt is made to extend this idea to web site recommendation. A collection of more than 1000 individuals' web profiles (alternatively called preferences / favourites / bookmarks file) will be used. URLs will be classified using the DMOZ (Directory Mozilla) database of the Open Directory Project as our ontology. This will then be used as the data for the Artificial Immune Systems rather than the actual addresses. The first attempt will involve using a simple classification code number coupled with the number of pages within that classification code. However, this implementation does not make use of the hierarchical tree-like structure of DMOZ. Consideration will then be given to the construction of a similarity measure for web profiles that makes use of this hierarchical information to build a better-informed Artificial Immune System.
Resumo:
We apply the Artificial Immune System (AIS)technology to the collaborative Filtering (CF)technology when we build the movie recommendation system. Two different affinity measure algorithms of AIS, Kendall tau and Weighted Kappa, are used to calculate the correlation coefficients for this movie recommendation system. From the testing we think that Weighted Kappa is more suitable than Kendall tau for movie problems.
Resumo:
Abstract. We combine Artificial Immune Systems (AIS) technology with Collaborative Filtering (CF) and use it to build a movie recommendation system. We already know that Artificial Immune Systems work well as movie recommenders from previous work by Cayzer and Aickelin ([3], [4], [5]). Here our aim is to investigate the effect of different affinity measure algorithms for the AIS. Two different affinity measures, Kendall's Tau and Weighted Kappa, are used to calculate the correlation coefficients for the movie recommender. We compare the results with those published previously and show that that Weighted Kappa is more suitable than others for movie problems. We also show that AIS are generally robust movie recommenders and that, as long as a suitable affinity measure is chosen, results are good.
Resumo:
Abstract. We combine Artificial Immune Systems (AIS) technology with Collaborative Filtering (CF) and use it to build a movie recommendation system. We already know that Artificial Immune Systems work well as movie recommenders from previous work by Cayzer and Aickelin ([3], [4], [5]). Here our aim is to investigate the effect of different affinity measure algorithms for the AIS. Two different affinity measures, Kendall's Tau and Weighted Kappa, are used to calculate the correlation coefficients for the movie recommender. We compare the results with those published previously and show that that Weighted Kappa is more suitable than others for movie problems. We also show that AIS are generally robust movie recommenders and that, as long as a suitable affinity measure is chosen, results are good.
Resumo:
We apply the Artificial Immune System (AIS)technology to the collaborative Filtering (CF)technology when we build the movie recommendation system. Two different affinity measure algorithms of AIS, Kendall tau and Weighted Kappa, are used to calculate the correlation coefficients for this movie recommendation system. From the testing we think that Weighted Kappa is more suitable than Kendall tau for movie problems.
Resumo:
Artificial Immune Systems have been used successfully to build recommender systems for film databases. In this research, an attempt is made to extend this idea to web site recommendation. A collection of more than 1000 individuals' web profiles (alternatively called preferences / favourites / bookmarks file) will be used. URLs will be classified using the DMOZ (Directory Mozilla) database of the Open Directory Project as our ontology. This will then be used as the data for the Artificial Immune Systems rather than the actual addresses. The first attempt will involve using a simple classification code number coupled with the number of pages within that classification code. However, this implementation does not make use of the hierarchical tree-like structure of DMOZ. Consideration will then be given to the construction of a similarity measure for web profiles that makes use of this hierarchical information to build a better-informed Artificial Immune System.
Resumo:
The immune system is a complex biological system with a highly distributed, adaptive and self-organising nature. This paper presents an artificial immune system (AIS) that exploits some of these characteristics and is applied to the task of film recommendation by collaborative filtering (CF). Natural evolution and in particular the immune system have not been designed for classical optimisation. However, for this problem, we are not interested in finding a single optimum. Rather we intend to identify a sub-set of good matches on which recommendations can be based. It is our hypothesis that an AIS built on two central aspects of the biological immune system will be an ideal candidate to achieve this: Antigen - antibody interaction for matching and antibody - antibody interaction for diversity. Computational results are presented in support of this conjecture and compared to those found by other CF techniques. Notes: Uwe Aickelin, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK