858 resultados para aquaculture effluent
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Channel catfish ponds are treated with salt (sodium chloride) to increase chloride concentration and prevent nitrite toxicity in fish. A survey indicated that most farmers try to maintain chloride concentration of 50 to 100 mg/L in ponds by annual salt applications. Averages and standard deviations for selected water quality variables in salt-treated ponds were as follows: chloride, 87.2 ± 37.5 mg/L; total dissolved solids (TDS), 336 ± 96 mg/L; specific conductance, 512 ± 164 μmhos/cm. Maximum values were 189 mg/L for chloride, 481 mg/L for TDS, and 825 μmhos/cm for specific conductance. Good correlations between specific conductance values and both chloride and TDS concentrations suggest that specific conductance can be a rapid method for estimating concentrations of these two variables in surface water. The maximum limit for chloride concentration in Alabama streams allowed by the Alabama Department of Environmental Management is 230 mg/L. The usual recommended upper limit of TDS for protection of aquatic life in freshwater streams is 1,000 mg/L. Based on the observed relationship between TDS concentration and specific conductance in Alabama catfish ponds, 1,000 mg/L TDS corresponds to 1,733 μmhos/cm specific conductance. It is unlikely that effluents from salt-treated catfish ponds would violate the in-stream chloride standard of 230 mg/L or harm aquatic life in streams. Nevertheless, chloride concentrations in ponds should be measured before salt application as a safe guard against excessive salt application and chloride concentrations above the in-stream chloride standard.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O objetivo deste trabalho foi confeccionar um biofiltro de baixo custo constituído por macrófita flutuante (Eichhornia crassipes). Os estudos limnológicos foram realizados 7 dias depois de colocadas as macrófitas no biofiltro, durante um período de 30 dias consecutivos, com amostragens 3 vezes por semana nas épocas de chuva, seca e de alta produção de organismos cultivados. Quanto aos compostos nitrogenados, as menores concentrações foram observadas no período de jul./ago., correspondendo à época de baixa produção de peixes e baixa adição de alimento nos tanques e viveiros de cultivo. O pH manteve-se ligeiramente ácido a alcalino ao longo do período experimental, não apresentando oscilações com os maiores valores médios no período de abr./mai. Os valores de pH influenciaram diretamente a alcalinidade e a dominância de bicarbonato no meio. Quanto à microfauna associada, entre os fitoplanctônicos as Chlorophyta foram o grupo dominante e entre os zooplanctônicos foram os Rotifera. Recomenda-se, no período de alta produção, substituição das plantas aquáticas por brotos bem pequenos a cada 10 dias.
Resumo:
This article provides a summary of research undertaken in 2000 using finfish to treat prawn farm effluent.
Resumo:
Long-term environmental sustainability and community acceptance of the shrimp farming industry in Australia requires on-going development of efficient cost-effective effluent treatment options. In this study, we aimed to evaluate the effectiveness of a shrimp farm treatment system containing finfish and vertical artificial substrates (VAS). This was achieved by (1) quantifying the individual and collective effects of grey mullet (Mugil cephalus L.) and VASs on water and sediment quality, and (2) comparing the retention of N in treatment systems with and without the presence of finfish (M. cephalus and the siganid Siganus nebulosus (Quoy & Gaimard)), where light was selectively removed. Artificial substrates were found to significantly improve the settlement of particulate material, regardless of the presence of finfish. Mullet actively resuspended settled solids and reduced the production of nitrate when artificial substrates were absent. However, appreciable nitrification was observed when mullet were present together with artificial substrates. The total quantity of N retained by the mullet was found to be 1.8– 2.4% of the incoming pond effluent N. It was estimated that only 21% of the pond effluent N was available for mullet consumption. When S. nebulosus was added, total finfish N retention increased from 1.8% to 3.9%, N retention by mullet also improved (78±16 to 132±21-mg N day−1 before and after siganid addition respectively). Presence of filamentous macroalgae (Enteromorpha spp.) was found to improve the removal of N from pond effluent relative to treatments where light was excluded. Denitrification was also a significant sink for N (up to 24% N removed). Despite the absence of algal productivity and greater availability of nitrate, denitrification was not higher in treatments where light was excluded. Mullet were found to have no effect on the rates of denitrification but significantly reduced macroalgal growth on the surface of the water. When mullet were absent, excessive macroalgal growth led to reduced dissolved oxygen concentrations and nitrification. This study concludes that the culture of mullet alone in shrimp farm effluent treatment systems does not result in significant retention of N but can contribute to the control of macroalgal biomass. To improve N retention and removal, further work should focus on polyculturing a range of species and also on improving denitrification.
Resumo:
There are many potential bioremediation approaches that may be suitable for prawn farms in Queensland. Although most share generally accepted bioremediation principles, advocacy for different methods tends to vary widely. This diversity of approach is particularly driven by the availability and knowledge of functional species at different localities around the world. In Australia, little is known about the abilities of many native species in this regard, and translocation and biosecurity issues prevent the use of exotic species that have shown potential in other countries. Species selected must be tolerant of eutrophic conditions and ecological shifts, because prawn pond nutrient levels and pathways can vary with different assemblages of autotrophic and heterotrophic organisms. Generally, they would be included in a constructed ecosystem because of their functional contributions to nutrient cycling and uptake, and to create nutrient sinks in forms of harvestable biomass. Wide salinity, temperature and water quality tolerances are also valuable attributes for selected species due to the sometimes-pronounced effects of environmental extremes, and to provide over-wintering options and adequate safety margins in avoiding mass mortalities. To practically achieve these bioremediation polycultures on a large scale, and in concert with the operations of a prawn farm, methods involving seed production, stock management, and a range of other farm engineering and product handling systems need to be reliably achievable and economically viable. Research funding provided by the Queensland Government through the Aquaculture Industry Development Initiative (AIDI) 2002-04 has enabled a number of technical studies into biological systems to treat prawn farm effluent for recirculation and improved environmental sustainability. AIDI bioremediation research in southern Queensland was based at the Bribie Island Aquaculture Research Centre (BIARC), and was conducted in conjunction with AIDI genetics and selection research, and a Natural Heritage Trust (NHT) funded program (Coast and Clean Seas Project No.717757). This report compilation provides a summary of some of the work conducted within these programs.
Resumo:
To experimentally investigate the effect of vertical artificial substrate and different densities of the banana prawn Penaeus (Fenneropenaeus) merguiensis on nutrient levels in prawn pond effluent, a time series experiment was conducted in a replicated tank system supplied periodically with discharge from a prawn production pond. Few differences (P>0.05) were detected between tanks without prawns, and tanks with low densities (5 prawns in 1700 litres) of prawns (10-12 g), in terms of nitrogen and phosphorus in the water column over the 28-day experimental period. Higher densities of prawns (starting at 25 or 50 per tank) caused an elevation of these macronutrients in the water column. This was partly due to prawn biomass losses from mortalities and weight reductions in the tank system. The survival and condition of prawns was significantly (P<0.05) reduced in tanks at these higher densities. The presence of artificial substrate (2 m2 tank-1) did not affect (P>0.05) the levels of nutrients in tank water columns, but significantly (P<0.05) increased the amount of nitrogen in tank residues left at the end of the trial when no prawns were present. The prawns had obviously been grazing on surfaces inside the tanks, and their swimming actions appeared to keep light particulate matter in suspension. Higher prawn densities increased microalgal blooms, which presumably kept ammonia levels low, and it is suggested that this association may provide the means for improved remediation of prawn farm effluent in the future.
Resumo:
To experimentally investigate the potential of mixed species polycultures for bioremediation of nutrient rich prawn farm effluent, a series of experiments was performed with banana prawns Penaeus (Fenneropenaeus) merguiensis, sea mullet Mugil cephalus and rabbitfish Siganus nebulosus to determine their compatibilities during particular life stages. Rabbitfish demonstrated a high tendency to prey upon banana prawn juveniles when no other food was available. Mullet of various sizes did not appear to prey upon banana prawn postlarvae (PL16) or juveniles in a fed or unfed environment. The study confirms the good potential for mullet and banana prawn polycultures.
Resumo:
Several species of oysters, clams and mussels are currently being used around the world to create extra profits and help remediate waste-waters from mariculture operations. To identify opportunities and potentially suitable species of bivalves for remediation of prawn farm effluent in Australia, recent literature dealing with bivalve filtration is reviewed, and species occurring naturally in a banana prawn, Penaeus (Fenneropenaeus) merguiensis, grow-out pond and effluent streams at the Bribie Island Aquaculture Research Centre (BIARC) were collected, identified and assessed in terms of their tolerance of high silt loadings over 3 months. Three bivalve species predominated in the BIARC case study. These were the mud ark, Anadara trapezia, the rock oyster, Dendostrea folium, and the pearl shell, Pinctada maculata. The mud ark demonstrated the highest tolerance of silt loading (99% survival), followed by pearl shells and rock oysters (88 and 63% survival respectively).
Resumo:
To experimentally investigate the effect of the “SKIM” mechanical foam fractionator on suspended material and the nutrient levels in prawn farm effluent, a series of standardised short-term treatments were applied to various effluent types in a static 10,000-litre water body. Prawn pond effluents were characterised by watercolour and dominance of phytoplankton species. Three effluent types were tested, namely 1) particulate-rich effluent with little apparent phytoplankton, 2) green mircoalgal bloom predominately made up of single celled phytoplankton, and 3) brown microalgal bloom with higher prevalence of diatoms. The effluent types were similar (P>0.05) in non-volatile particulate material, and nitrate/nitrite but varied from each other in the following ways: 1) The particulate-rich effluents were lower (P<0.05) in volatile solids (compared to brown blooms), total Kjeldahl nitrogen, dissolved organic nitrogen, dissolved organic phosphorus and chlorophyll a (compared to both green and brown blooms). 2) The brown blooms were higher (P<0.05) in ammonia (compared to green blooms), total nitrogen and total phosphorus (compared to both green and particulate-rich effluent), but were lower (P<0.05) in inorganic phosphorus (compared to both green and particulate-rich effluent). 3) The green blooms were higher (P<0.05) in dissolved (both organic and inorganic) phosphorus (compared to both brown and particulate-rich effluents). Although the effluent types varied significantly in these aspects the effect of the Skim treatment was similar for all parameters measured except total phosphorus. Bloom type and Skim-treatment period significantly (P<0.05) affected total Kjeldahl phosphorus concentrations. For all effluent types there was a continuous significant reduction (P<0.05) in total Kjeldahl phosphorus during the initial 6-hour treatment period. Levels of total suspended solids and volatile suspended solids in all effluent types were significantly (P<0.05) reduced in the first 2 hours but not thereafter. Non-volatile suspended solids were also significantly (P<0.05) reduced in the first 2 hours (30 to 40 % reduction) and a further 40% reduction occurred in the particulate-rich effluent over the next 2 hours. Mean values for total ammonia, dissolved organic nitrogen, total Kjeldahl nitrogen, total nitrogen, chlorophyll a and dissolved organic or inorganic phosphorus levels were not significantly (P>0.05) affected by the Skim unit in any bloom type during the initial 6 hours of testing. Nevertheless, non-significant nitrogen reductions did occur. Foam production by the Skim unit varied with different blooms, resulting in different concentrate volumes and different end points for separate experiments. Concentrate volumes were generally high for the particulate-rich and green blooms (175 – 370 litres) and low for the brown blooms (25 – 80 litres). This was due to the low tendency of the brown bloom to produce foam. This generated higher nutrient concentrations in the associated condensed foam, but may have limited the treatment efficiency. The results suggest that in this application, the Skim unit did not remove micro-algae as effectively as was anticipated. However, it was effective at removing other suspended solids. Considering these attributes and the other uses of this machinery documented by the manufactures, the unit’s oxygenation mixing capacities coupled with inorganic solids removal may provide a suitable mechanism for construction of a continuously mixed bioreactor that utilises the filtration and profit making abilities of bivalves.
Resumo:
Developing guidelines for sustainable freshwater aquaculture planning in Vietnam. Aquaculture production, certification and trade: Challenges and opportunities for the small-scale farmer in Asia. The successful development of backyard hatcheries for crustaceans in Thailand. Alternate carp species for diversification in freshwater aquaculture in India. Genetic and reproduction technologies for enhanced aquaculture and fisheries management of Murray cod. Effluent and disease management in traditional practices of shrimp farming: A case study on the west coast of Sabah, Malaysia. Status of sahar domestication and its development in the Himalayan Region of Nepal. Vaccination benefits highlighted as Schering-Plough reinforces commitment to Asian aquaculture. Comparative advantage analysis of shrimp production in Asia. Strategies to improve livelihood of the rural poor: A case study in two small reservoirs in Binh Phuoc Province, Vietnam. Cambodian Government ban on snakehead farming enforced. Marine finfish aquaculture developments at ‘Indonesian Aquaculture 2007’. Production update – marine finfish aquaculture in the Asia-Pacific region. Body size of rotifers from estuaries in North Sulawesi. NACA Newsletter.
Resumo:
Aquaculture production in Nigeria has increased tremendously in recent times; along with this increase is the rise in the level of waste outputs from aquaculture practices. The discharge of waste from aquaculture operations on continuous basis leads to eutrophication and destruction of natural ecosystem in receiving water body. Controlled wastes production strategies is necessary to maintain sustainable aquaculture growth into the future, as long-term sustainability of fish culture systems depends on their ability to reduce their waste outputs. The release of solid wastes is mainly a function of the digestibility of various dietary components while the release of dissolved wastes is mainly a function of the metabolism of nutrients by the fish. This paper critically reviews the impacts of aquaculture wastes on the environment and the strategies to mitigate the effect of these impacts. Future trends and research needs on aquaculture induced effluents are outlined. As the amount of nutrient discharge is typically site and operation specific, effective farm management has been identified as the most important factor to avoid effluent pollution.