988 resultados para anti-quorum sensing
Resumo:
Abstract The aim of this study was to assess the anti-quorum sensing activity of phenolic extracts from grumixama (Eugenia brasiliensis), also known as Brazilian cherry, in concentrations that did not interfere with bacterial growth. The pulp phenolic compounds were extracted by using solid phage extraction in a mini-collumn C18 and quantified by spectrophotometry. The anti-quorum sensing activity was evaluated by testing the inhibition of violacein production in Chromobacterium violaceum and by evaluating the swarming motility in Aeromonas hydrophila and Serratia marcescens, both phenotypes regulated by quorum sensing. The phenolic extract strongly inhibited the production of violacein in C. violaceum, reducing its production in comparison with a control with no extract. No inhibition of growth was observed at the concentrations tested for quorum sensing inhibition. Confirming the quorum sensing inhibition phenotype, the extract was also able to inhibit swarming motility in S. marcescens and in A. hydrophila, although in the later the effect was marginal. Overall, these results indicate that phenolic extract from E. brasiliensis presents quorum sensing inhibitory activity most likely due to the presence of fruit phenolics which have been implicated as quorum sensing inhibitors in Gram negative bacteria.
Resumo:
With the difficulty in treating recalcitrant infections and the growing resistance to antibiotics, new therapeutic modalities are becoming increasingly necessary. The interruption of bacterial quorum sensing (QS), or cell-cell communication is known to attenuate virulence, while limiting selective pressure toward resistance. This study initiates an ethnobotanically-directed search for QS inhibiting agents in south Florida medicinal plants. Fifty plants were screened for anti-QS activity using two biomonitor strains, Chromobacterium violaceum and Agrobacterium tumefaciens. Of these plants, six showed QS inhibition: Conocarpus erectus L. (Combretaceae), Chamaecyce hypericifolia (L.) Millsp. (Euphorbiaceae), Callistemon viminalis (Sol.ex Gaertn.) G. Don (Myrtaceae), Bucida burceras L. (Combretaceae), Tetrazygia bicolor (Mill.) Cogn. (Melastomataceae), and Quercus virginiana Mill. (Fagaceae). These plants were further examined for their effects on the QS system and virulence of Pseudomonas aeruginosa, an intractable opportunistic pathogen responsible for morbidity and mortality in the immunocompromised patient. C. erectus, B. buceras, and C. viminalis were found to significantly inhibit multiple virulence factors and biofilm formation in this organism. Each plant presented a distinct profile of effect on QS genes and signaling molecules, suggesting varying modes of action. Virulence attenuation was observed with marginal reduction of bacterial growth, suggesting quorum quenching mechanisms unrelated to static or cidal effects. Extracts of these plants were also investigated for their effects on P. aeruginosa killing of the nematode Caenorhabditis elegans. Results were evaluated in both toxin-based and infection-based assays with P. aeruginosa strains PA01 and PA14. Overall nematode mortality was reduced 50-90%. There was no indication of host toxicity, suggesting the potential for further development as anti-infectives. Using low-pressure chromatography and HPLC, two stereoisomeric ellagitannins, vescalagin and castalagin were isolated from an aqueous extract of C. erectus . Structures were confirmed via mass spectrometry and NMR spectroscopy. Both ellagitannins were shown to decrease signal production, QS gene expression, and virulence factor production in P. aeruginosa. This study introduces a potentially new therapeutic direction for the treatment of bacterial infections. In addition, this is the first report of vescalagin and castalagin being isolated from C. erectus, and the first report of ellagitannin activity on the QS system.
Resumo:
Quorum sensing (QS) is the phenomenon by which microorganisms regulate gene expression in response to cell-population density. These microorganisms synthesize and secrete small molecules known as autoinducers that increase in concentration as a function of cell density. Once the cell detects the minimal threshold concentration of an autoinducer, the gene expression is altered accordingly. Although the cellular circuitry responding to QS is relatively conserved, the cellular processes regulated by QS, for example are conjugation, motility, sporulation, biofilm formation and production of virulence factors importamt for infection. Since many pathogens have developed resistance to available antibiotics, novel therapies are required to further treat these pathogens. Inhibitors of QS are potential therapeutic candidates since they would inhibit virulence without selecting for antibiotic resistant strains. Previous studies have shown that the Chinese herb Panax ginseng contains compounds that inhibit QS activity. To further characterize this activity, a highly sensitive quantitative liquid assay was developed using a Chromobacterium violaceum AHL mutant, CV026 as a biomonitor strain. After confirmation that P. ginseng aqueous extracts had anti-QS activity, the extract was fractionated on a reverse phase C18 Sep Pak column. Most anti-QS activity was present in the flow through, and compounds eluted with ten percent acetonitrile in water antibacterial activity. We thus conclude that P. ginseng has anti-QS activity and the active compound is water soluble. Compounds from P. ginseng, could be used as a lead structure to design compound with higher anti-QS activity for therapeutic treatments.
Resumo:
Quorum sensing is a communication mechanism employed by many bacteria. The bacteria secrete signal molecules known as acyl homoseriene lactones (AHLs) that cue to population size/density. Bacteria can be alerted of this optimum population by the concentration of these signal molecules. When the concentration of AHLs exceed a threshold valve, they enter the bacterial cell and causes the transcription of genes encoding virulence factors necessary for their colonization and survival. The marine algae Delise a pulchra, found off the coast of Australia is thought to produce compounds that inhibit the activity of the AHLs. The algae employ these compounds, known as furanones, as an anti-fouling agent. We postulated that marine algae of South Florida might contain similar activity; we screened 30 different algal species and found 22 species had the activity. Algal extracts were made from Halimeda incrassata using hexane, chloroform, ethyl acetate and methanol as solvents. The extracts were assayed for anti-quorum sensing activity. The results showed many of the South Florida green algae to possess anti-quorum sensing activity, however extracts of H incrassata did not show quorum sensing inhibition.
Resumo:
With the difficulty in treating recalcitrant infections and the growing resistance to antibiotics, new therapeutic modalities are becoming increasingly necessary. The interruption of bacterial quorum sensing (QS), or cell-cell communication is known to attenuate virulence, while limiting selective pressure toward resistance. This study initiates an ethnobotanically-directed search for QS inhibiting agents in south Florida medicinal plants. Fifty plants were screened for anti-QS activity using two biomonitor strains, Chromobacterium violaceum and Agrobacterium tumefaciens. Of these plants, six showed QS inhibition: Conocarpus erectus L. (Combretaceae), Chamaecyce hypericifolia (L.) Millsp. (Euphorbiaceae), Callistemon viminalis (Sol.ex Gaertn.) G. Don (Myrtaceae), Bucida burceras L. (Combretaceae), Tetrazygia bicolor (Mill.) Cogn. (Melastomataceae), and Quercus virginiana Mill. (Fagaceae). These plants were further examined for their effects on the QS system and virulence of Pseudomonas aeruginosa, an intractable opportunistic pathogen responsible for morbidity and mortality in the immunocompromised patient. C. erectus, B. buceras, and C. viminalis were found to significantly inhibit multiple virulence factors and biofilm formation in this organism. Each plant presented a distinct profile of effect on QS genes and signaling molecules, suggesting varying modes of action. Virulence attenuation was observed with marginal reduction of bacterial growth, suggesting quorum quenching mechanisms unrelated to static or cidal effects. Extracts of these plants were also investigated for their effects on P. aeruginosa killing of the nematode Caenorhabditis elegans. Results were evaluated in both toxin-based and infection-based assays with P. aeruginosa strains PA01 and PA14. Overall nematode mortality was reduced 50-90%. There was no indication of host toxicity, suggesting the potential for further development as anti-infectives. Using low-pressure chromatography and HPLC, two stereoisomeric ellagitannins, vescalagin and castalagin were isolated from an aqueous extract of C. erectus. Structures were confirmed via mass spectrometry and NMR spectroscopy. Both ellagitannins were shown to decrease signal production, QS gene expression, and virulence factor production in P. aeruginosa. This study introduces a potentially new therapeutic direction for the treatment of bacterial infections. In addition, this is the first report of vescalagin and castalagin being isolated from C. erectus, and the first report of ellagitannin activity on the QS system.
Resumo:
Bacterial quorum sensing (QS) is a density dependent communication system that regulates the expression of certain genes including production of virulence factors in many pathogens. Bioactive plant extract/compounds inhibiting QS regulated gene expression may be a potential candidate as antipathogenic drug. In this study anti-QS activity of peppermint (Menthe piperita) oil was first tested using the Chromobacterium violaceum CVO26 biosensor. Further, the findings of the present investigation revealed that peppermint oil (PMO) at sub-Minimum Inhibitory Concentrations (sub-MICs) strongly interfered with acyl homoserine lactone (AHL) regulated virulence factors and biofilm formation in Pseudomonas aeruginosa and Aeromonas hydrophila. The result of molecular docking analysis attributed the QS inhibitory activity exhibited by PMO to menthol. Assessment of ability of menthol to interfere with QS systems of various Gram-negative pathogens comprising diverse AHL molecules revealed that it reduced the AHL dependent production of violacein, virulence factors, and biofilm formation indicating broad-spectrum anti-QS activity. Using two Escherichia colt biosensors, MG4/pKDT17 and pEAL08-2, we also confirmed that menthol inhibited both the las and pqs QS systems. Further, findings of the in vivo studies with menthol on nematode model Caenorhabditis elegans showed significantly enhanced survival of the nematode. Our data identified menthol as a novel broad spectrum QS inhibitor.
Resumo:
The staphylococci are an ever-present threat in our world, capable of causing a wide range of infections, and are a persistent presence in the clinical environment. As the number of antimicrobial compounds effective against staphylococci decreases, because of the acquisition and spread of antibiotic resistance, there is a growing need for novel therapeutic molecules. Intra and inter-species communication (quorum sensing) is a biologically significant phenomenon that has been associated with virulence, intracellular survival, and biofilm formation. Quorum sensing molecules of staphylococci and other species (e.g. Pseudomonas aeruginosa) can inhibit virulence factor production and/or growth of staphylococci, leading to the possibility that interference with staphylococcal quorum-sensing systems could be a way of controlling the diverse infections caused by the staphylococci. In this article, we discuss the potential of quorum-sensing systems of staphylococci as therapeutic targets.
Resumo:
The mammalian gut microbiota harbors a diverse ecosystem where hundreds of bacterial species interact with each other and their host. Given that bacteria use signals to communicate and regulate group behaviors (quorum sensing), we asked whether such communication between different commensal species can influence the interactions occurring in this environment. We engineered the enteric bacterium, Escherichia coli, to manipulate the levels of the interspecies quorum sensing signal, autoinducer-2 (AI-2), in the mouse intestine and investigated the effect upon antibiotic-induced gut microbiota dysbiosis. E. coli that increased intestinal AI-2 levels altered the composition of the antibiotic-treated gut microbiota, favoring the expansion of the Firmicutes phylum. This significantly increased the Firmicutes/Bacteroidetes ratio, to oppose the strong effect of the antibiotic, which had almost cleared the Firmicutes. This demonstrates that AI-2 levels influence the abundance of the major phyla of the gut microbiota, the balance of which is known to influence human health.
Resumo:
Sponges are a rich source for investigation of bioactive small molecules. They have been mostly investigated for the search of new pharmacological models or therapeutic agents for the treatment of human diseases. Micro-organisms can also represent a virulent pathogen for marine invertebrates such as sponges, which need to protect themselves against these microbes. Sponges' self defence mechanisms involving dialogue molecules thus represent a pertinent research track for potent anti-infective and anti-biofilm activities such as quorum sensing inhibitors (QSIs). The investigation of the QSI crude extract of Leucetta chagosensis Dendy, 1863 led to the isolation of three new alkaloids, isonaamine D, di-isonaamidine A and leucettamine D, along with the known isonaamine A and isonaamidine A. Isonaamidine A and isonaamine D were identified as inhibitors of the three quorum sensing pathways of Vibrio harveyi (CAI-1, AI-2 and harveyi auto inducer), but isonaamidine A displayed the strongest activity on AI-2 biosensor. Both compounds are new examples of natural QSIs of V. harveyi. These results outline the importance of these secondary metabolites for their producing organisms themselves in their natural environment, as well as the potential of the marine resource for aquaculture needs.
Resumo:
Connectivity of the glycocalyx covering of small communities of Acidithiobacillus ferrooxidans bacteria deposited on hydrophilic mica plates was imaged by atomic force microscopy. When part of the coverage was removed by water rinsing, an insoluble structure formed by corrals surrounding each individual bacterium was observed. A collective ring structure with clustered bacteria (>= 3) was observed, which indicates that the bacteria perceived the neighborhood in order to grow a protective structure that results in smaller production of exopolysaccharides material. The most surprising aspect of these collective corral structures was that they occur at a low bacterial cell density. The deposited layers were also analyzed by confocal Raman microscopy and shown to contain polysaccharides, protein, and glucoronic acid.
Resumo:
Traditional treatment of infectious diseases is based on compounds that kill or inhibit growth of bacteria. A major concern with this approach is the frequent development of resistance to antibiotics. The discovery of communication systems (quorum sensing systems) regulating bacterial virulence has afforded a novel opportunity to control infectious bacteria without interfering with growth. Compounds that can override communication signals have been found in the marine environment. Using Pseudomonas aeruginosa PAO1 as an example of an opportunistic human pathogen, we show that a synthetic derivate of natural furanone compounds can act as a potent antagonist of bacterial quorum sensing. We employed GeneChip((R)) microarray technology to identify furanone target genes and to map the quorum sensing regulon. The transcriptome analysis showed that the furanone drug specifically targeted quorum sensing systems and inhibited virulence factor expression. Application of the drug to P.aeruginosa biofilms increased bacterial susceptibility to tobramycin and SDS. In a mouse pulmonary infection model, the drug inhibited quorum sensing of the infecting bacteria and promoted their clearance by the mouse immune response.
Resumo:
It has been reported that mutations in the quorum-sensing genes lasI and rhlI in Pseudomonas aeruginosa result in, among many other things, loss of twitching motility (A. Glessner, R. S. Smith, B. H. Iglewski, and J. B. Robinson, J. Bacteriol. 181:1623-1629, 1999). We constructed knockouts of lasI and rhlI and the corresponding regulatory genes lasR and rhlR and found no effect on twitching motility. However, twitching-defective variants accumulated during culturing of lasI and rhlI mutants. Further analysis showed that the stable twitching-defective variants of lasI and rhlI mutants had arisen as a consequence of secondary mutations in vfr and algR, respectively, both of which encode key regulators affecting a variety of phenotypes, including twitching motility. In addition, when grown in shaking broth culture, lasI and rhlI mutants, but not the wild-type parent, also accumulated unstable variants that lacked both twitching motility and swimming motility and appeared to be identical in phenotype to the S1 and S2 variants that were recently reported to occur at high frequencies in P. aeruginosa strains grown as a biofilm or in static broth culture (E. Deziel, Y. Comeau, and R. Villemur, J. Bacteriol. 183:1195-1204, 2001). These results indicate that mutations in one regulatory system may create distortions that select during subsequent culturing for compensatory mutations in other regulatory genes within the cellular network. This problem may have compromised some past studies of regulatory hierarchies controlled by quorum sensing and of bacterial regulatory systems in general.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology.
Resumo:
AbstractINTRODUCTION:Chamomile ( Chamaemelum nobile ) is widely used throughout the world, and has anti-inflammatory, deodorant, bacteriostatic, antimicrobial, carminative, sedative, antiseptic, anti-catarrhal, and spasmolytic properties. Because of the increasing incidence of drug-resistant bacteria, the development of natural antibacterial sources such as medical herbs for the treatment of infectious diseases is necessary. Extracts from different plant parts such as the leaves, flowers, fruit, and bark of Combretum albiflorum, Laurus nobilis , and Sonchus oleraceus were found to possess anti-quorum sensing (QS) activities. In this study, we evaluated the effect of C. nobile against Pseudomonas aeruginosa biofilm formationMETHODS:The P. aeruginosa samples were isolated from patients with different types of infection, including wound infection, septicemia, and urinary tract infection. The flowers of C. nobile were dried and the extract was removed using a rotary device and then dissolved in dimethyl sulfoxide at pH 7.4. The microdilution method was used to evaluate the minimum inhibitory concentration (MIC) of this extract on P. aeruginosa , and biofilm inhibition was assayed.RESULTS:Eighty percent of the isolated samples (16/20) could form a biofilm, and most of these were isolated from wound infections. The biofilm inhibitory concentration of the C. nobile extract was 6.25-25mg/ml, whereas the MIC was 12.5-50mg/ml.CONCLUSIONS:The anti-QS property of C. nobile may play an important role in its antibacterial activity, thus offering an additional strategy in the fight against bacterial infections. However, molecular investigation is required to explore the exact mechanisms of the antibacterial action and functions of this phytocompound.
Resumo:
Virulence factors of Pseudomonas aeruginosa include hydrogen cyanide (HCN). This secondary metabolite is maximally produced at low oxygen tension and high cell densities during the transition from exponential to stationary growth phase. The hcnABC genes encoding HCN synthase were identified on a genomic fragment complementing an HCN-deficient mutant of P. aeruginosa PAO1. The hcnA promoter was found to be controlled by the FNR-like anaerobic regulator ANR and by the quorum-sensing regulators LasR and RhlR. Primer extension analysis revealed two transcription starts, T1 and T2, separated by 29 bp. Their function was confirmed by transcriptional lacZ fusions. The promoter sequence displayed an FNR/ANR box at -42.5 bp upstream of T2 and a lux box centered around -42.5 bp upstream of T1. Expression of the hcn genes was completely abolished when this lux box was deleted or inactivated by two point mutations in conserved nucleotides. The lux box was recognized by both LasR [activated by N-(oxododecanoyl)-homoserine lactone] and RhlR (activated by N-butanoyl-homoserine lactone), as shown by expression experiments performed in quorum-sensing-defective P. aeruginosa mutants and in the N-acyl-homoserine lactone-negative heterologous host P. fluorescens CHA0. A second, less conserved lux box lying 160 bp upstream of T1 seems to account for enhanced quorum-sensing-dependent expression. Without LasR and RhlR, ANR could not activate the hcn promoter. Together, these data indicate that expression of the hcn promoter from T1 can occur under quorum-sensing control alone. Enhanced expression from T2 appears to rely on a synergistic action between LasR, RhlR, and ANR.