988 resultados para anti-Doping
Resumo:
Big sports events like the 2008 European Football Championship are a challenge for anti-doping activities, particularly when the sports event is hosted by two different countries and there are two laboratories accredited by the World Anti-Doping Agency. This challenges the logistics of sample collection as well as the chemical analyses, which must be carried out timeously. The following paper discusses the handling of whereabouts information for each athlete and the therapeutic use exemption system, experiences in sample collection and transportation of blood and urine samples, and the results of the chemical analysis in two different accredited laboratories. An overview of the analytical results of blood profiling and growth hormone testing in comparison with the distribution of the normal population is also presented.
Resumo:
Background: Urinary human chorionic gonadotropin (hCG) concentration is routinely measured in all anti-doping laboratories to exclude the misuse of recombinant or urinary hCG preparations. In this study, extended validation of two commercial immunoassays for hCG measurements in urine was performed. Both tests were initially designed for hCG determination in human serum/plasma. Methods: Access (R) and Elecsys (R) 1010 are two automated immunoanalysers for central laboratories. The limits of detection and quantification, as well as intra-laboratory and inter-technique correlation, precision, and accuracy, were determined. Stability studies of hCG in urine following freezing and thawing cycles (n = 3) as well as storage conditions at room temperature, 4 degrees C and 20 degrees C, were performed. Results: Statistical evaluation of hCG concentrations in male urine samples (n = 2429) measured with the Elecsys (R) 1010 system enabled us to draw a skewed frequency histogram and establish a far outside value equal to 2.3 IU/L. This decision limit corresponds to the concentration at which a sportsman will be considered positive for hCG. Intra-assay precision for the Access (R) analyser was less than 4.0 A, whereas the inter-assay precision was closer to 4.5 % (concentrations of the official external controls contained between 5.5 and 195.0 IU/L). Intra and inter-assay precision for the Elecsys (R) 1010 analyser was slightly better. A good inter-technique correlation was obtained when measuring various urine samples (male and female). No urinary hCG loss was observed after two freeze/thaw cycles. On the other hand, time and inappropriate storage conditions, such as temperatures above 10 degrees C for more than 5 days, can deteriorate urinary hCG. Conclusions: Both analysers showed acceptable performances and are suitable for screening urine for anti-doping analyses. Each laboratory should validate and establish its own reference values because hCG concentrations measured in urine can be different from one immunoassay to another. The time delay between urine collection and analysis should be reduced as much as possible, and urine samples should be transported in optimal conditions to avoid a loss of hCG immunoreactivity.
Resumo:
Since the 1990's, cheating athletes have abused substances to increase their oxygen transport capabilities; among these substances, recombinant EPO is the most well known. Currently, other investigational pharmaceutical products are able to produce an effect similar to EPO but without having chemical structures related to EPO; these are the synthetic erythropoiesis stimulating agents (ESAs). Peginesatide (also known as Hematide?) is being developed by Affymax and Takeda and, if approved by regulatory authorities, could soon be released on the international market. To detect potential athletic abuse of this product and deter athletes who consider cheating, we initiated a collaboration to implement a detection test for anti-doping purposes. Peginesatide is a synthetic, PEGylated, investigational, peptide-based erythropoiesis-stimulating agent that is designed and engineered to stimulate specifically the erythropoietin receptor dimer that governs erythropoiesis. It is undetectable using current anti-doping tests due to its lack of sequence homology to EPO. To detect and deter potential abuse of peginesatide, we initiated an industry/antidoping laboratory collaboration to develop and validate screening and confirmation assays so that they would be available before peginesatide reaches the market. We describe a screening ELISA and a confirmation assay consisting of immune-purification followed by separation with SDS-PAGE and revelation with Western double blotting. Both assays can detect 0.5 ng/mL concentrations of peginesatide in blood samples, enabling detection for several days after administration of a physiologically relevant dose. This initial report describes experimental characterization of these assays, including testing with a blinded set of samples from a clinical study conducted in healthy volunteers.
Resumo:
Today's approach to anti-doping is mostly centered on the judicial process, despite pursuing a further goal in the detection, reduction, solving and/or prevention of doping. Similarly to decision-making in the area of law enforcement feeding on Forensic Intelligence, anti-doping might significantly benefit from a more extensive gathering of knowledge. Forensic Intelligence might bring a broader logical dimension to the interpretation of data on doping activities for a more future-oriented and comprehensive approach instead of the traditional case-based and reactive process. Information coming from a variety of sources related to doping, whether directly or potentially, would feed an organized memory to provide real time intelligence on the size, seriousness and evolution of the phenomenon. Due to the complexity of doping, integrating analytical chemical results and longitudinal monitoring of biomarkers with physiological, epidemiological, sociological or circumstantial information might provide a logical framework enabling fit for purpose decision-making. Therefore, Anti-Doping Intelligence might prove efficient at providing a more proactive response to any potential or emerging doping phenomenon or to address existing problems with innovative actions or/and policies. This approach might prove useful to detect, neutralize, disrupt and/or prevent organized doping or the trafficking of doping agents, as well as helping to refine the targeting of athletes or teams. In addition, such an intelligence-led methodology would serve to address doping offenses in the absence of adverse analytical chemical evidence.
Resumo:
We present a method for the analysis of urinary 16(5alpha)-androsten-3alpha-ol together with 5beta-pregnane-3alpha,20alpha-diol and four testosterone metabolites: androsterone (Andro), etiocholanolone (Etio), 5alpha-androstane-3alpha,17beta-diol (5alphaA), 5beta-androstane-3alpha,17beta-diol (5betaA) by means of gas chromatography/combustion/isotopic ratio mass spectrometry (GC/C/IRMS). The within-assay and between-assay precision S.D.s of the investigated steroids were lower than 0.3 and 0.6 per thousand, respectively. A comparative study on a population composed of 20 subjects has shown that the differences of the intra-individual delta(13)C-values for 16(5alpha)-androsten-3alpha-ol and 5beta-pregnane-3alpha,20alpha-diol are less than 0.9 per thousand. Thereafter, the method has been applied in the frame of an excretion study following oral ingestion of 50 mg DHEA initially and oral ingestion of 50mg pregnenolone 48 h later. Our findings show that administration of DHEA does not affect the isotopic ratio values of 16(5alpha)-androsten-3alpha-ol and 5beta-pregnane-3alpha,20alpha-diol, whereas the isotopic ratio values of 5beta-pregnane-3alpha,20alpha-diol vary by more 5 per thousand upon ingestion of pregnenolone. We have observed delta(13)C-value changes lower than 1 per thousand for 16(5alpha)-androsten-3alpha-ol, though pregnenolone is a precursor of the 16-ene steroids. In contrast to 5beta-pregnane-3alpha,20alpha-diol, the 16-ene steroid may be used as an endogenous reference compound when pregnenolone is administered.
Resumo:
Stimulation of erythropoiesis is one of the most efficient ways of doping. This type of doping is advantageous for aerobic physical exercise and of particular interest to endurance athletes. Erythropoiesis, which takes place in bone marrow, is under the control of EPO, a hormone secreted primarily by the kidneys when the arterial oxygen tension decreases. In certain pathological disorders, such as chronic renal failure, the production of EPO is insufficient and results in anemia. The pharmaceutical industry has, thus, been very interested in developing drugs that stimulate erythropoiesis. With this aim, various strategies have been, and continue to be, envisaged, giving rise to an expanding range of drugs that are good candidates for doping. Anti-doping control has had to deal with this situation by developing appropriate methods for their detection. This article presents an overview of both the drugs and the corresponding methods of detection, and thus follows a roughly chronological order.
Resumo:
Big sports events like the 2008 European Football Championship are a challenge for anti-doping activities, particularly when the sports event is hosted by two different countries and there are two laboratories accredited by the World Anti-Doping Agency. This challenges the logistics of sample collection as well as the chemical analyses, which must be carried out timeously. The following paper discusses the handling of whereabouts information for each athlete and the therapeutic use exemption system, experiences in sample collection and transportation of blood and urine samples, and the results of the chemical analysis in two different accredited laboratories. An overview of the analytical results of blood profiling and growth hormone testing in comparison with the distribution of the normal population is also presented.
Resumo:
Evidence of a sport-specific hierarchy of protective factors against doping would thus be a powerful aid in adapting information and prevention campaigns to target the characteristics of specific athlete groups, and especially those athletes most vulnerable for doping control. The contents of phone calls to a free and anonymous national anti-doping service called 'ecoute dopage' were analysed (192 bodybuilders, 124 cyclists and 44 footballers). The results showed that the protective factors that emerged from analysis could be categorised into two groups. The first comprised 'Health concerns', 'Respect for the law' and 'Doping controls from the environment' and the second comprised 'Doubts about the effectiveness of illicit products, 'Thinking skills' and 'Doubts about doctors'. The ranking of the factors for the cyclists differed from that of the other athletes. The ordering of factors was 1) respect for the law, 2) doping controls from the environment, 3) health concerns 4) doubts about doctors, and 5) doubts about the effectiveness illicit products. The results are analysed in terms of the ranking in each athlete group and the consequences on the athletes' experience and relationship to doping. Specific prevention campaigns are proposed to limit doping behaviour in general and for each sport.
Resumo:
This paper focuses on the transformation of French public policy on doping and its effects on the life of cycling professionals. We first focus on the emergence and the evolution of French public policies against doping in cycling. Then the article attempts to qualitatively observe the effects of policies on cyclists. The objective is to understand how the cycling culture is evolving. This article is based on 39 interviews with new and seasoned professionals, as well as ethnographic observations over a dozen years .
Resumo:
The fight against doping is mainly focused on direct detection, using analytical methods for the detection of doping agents in biological samples. However, the World Anti-Doping Code also defines doping as possession, administration or attempted administration of prohibited substances or methods, trafficking or attempted trafficking in any prohibited substance or methods. As these issues correspond to criminal investigation, a forensic approach can help assessing potential violation of these rules.In the context of a rowing competition, genetic analyses were conducted on biological samples collected in infusion apparatus, bags and tubing in order to obtain DNA profiles. As no database of athletes' DNA profiles was available, the use of information from the location detection as well as contextual information were key to determine a population of suspected athletes and to obtain reference DNA profiles for comparison.Analysis of samples from infusion systems provided 8 different DNA profiles. The comparison between these profiles and 8 reference profiles from suspected athletes could not be distinguished.This case-study is one of the first where a forensic approach was applied for anti-doping purposes. Based on this investigation, the International Rowing Federation authorities decided to ban not only the incriminated athletes, but also the coaches and officials for 2 years.
Resumo:
The fight against doping is mainly focused on direct detection, using analytical methods for the detection of doping agents in biological samples. However, the World Anti-Doping Code also defines doping as possession, administration or attempted administration of prohibited substances or methods, trafficking or attempted trafficking in any prohibited substance or methods. As these issues correspond to criminal investigation, a forensic approach can help assessing potential violation of these rules. In the context of a rowing competition, genetic analyses were conducted on biological samples collected in infusion apparatus, bags and tubing in order to obtain DNA profiles. As no database of athletes' DNA profiles was available, the use of information from the location detection as well as contextual information were key to determine a population of suspected athletes and to obtain reference DNA profiles for comparison. Analysis of samples from infusion systems provided 8 different DNA profiles. The comparison between these profiles and 8 reference profiles from suspected athletes could not be distinguished. This case-study is one of the first where a forensic approach was applied for anti-doping purposes. Based on this investigation, the International Rowing Federation authorities decided to ban not only the incriminated athletes, but also the coaches and officials for 2 years.
Resumo:
Résumé : Erythropoietin (EPO) is a glycoprotein hormone endogenously produced by the kidney, whose main physiological role is the stimulation of erythropoiesis. Since the beginning of the nineties, recombinant human EPO (rhEPO), a potent anti-anaemia treatment drug, has been manufactured by pharmaceutical industries. However, the erythropoiesis stimulating power of rhEPO was rapidly misused by unscrupulous athletes in order to improve their performances in endurance sports. Endogenous EPO has the same amino-acid backbone as most of recombinant forms; the molecules however differ through their respective glycosylation patterns. This difference constitutes the basis of the usual EPO screening test (IEF) developed in 2000 and still currently used in all anti-doping laboratories of the world. Nowadays, 3 EPO generations have been commercialized. The fight against EPO abuse is a continuous challenge for anti-doping laboratories. The diversity of recombinant EPO forms and the continuous development of new ones considerably confuse the identification of EPO doping. Several facets of this fight were investigated in this work. One of the limiting aspects of doping agents screening is the availability of positive samples. Therefore, 2nd and 3rd generation EPOS, namely NESP and C.E.R.A., were injected to healthy subjects in the frame of pilot clinical studies. These latter allowed to review the current EPO identification criteria defined by the World Anti-Doping Agency (WADA) in the case of NESP and to validate and implement a new assay targeting C.E.R.A. in human serum. Both studies resulted in the determination of the respective detection windows of NESP and C.E.R.A. in biological fluids. Following that, Dynepo, a 1st generation EPO presenting similarities with the endogenous form, was also in the centre of a similar clinical study. Our work aimed to overcome the actual identification criteria, which are not adapted to Dynpeo, and to propose an alternative pattern classification method based on the discriminant analysis of IEF EPO profiles. This method might be validated for other EPO forms in the future. The detection window of this molecule was also determined. Under particular conditions, confounding effects can complicate the identification of EPO in biological matrices. For example, athletes having performed a strenuous physical effort can excrete modified isoforms of endogenous EPO, making it very similar to some recombinant forms. Such phenomena, called effort urines, were reproduced under controlled conditions and, after characterization of effort EPO, an urinary biochemical marker was proposed to unequivocally identify effort urines. It also happens that EPO analyses fail to detect endogenous levels of EPO. Such profiles were thoroughly investigated and potential causes identified. Natural reasons relying on urine properties and test specificity were underlined, but the possible addition of adulterant agents in urine samples was also considered. Therefore, a simple biochemical assay targeting the suspected substances was set up. Our work was based on the characterization of atypical EPO profiles from different origins. Therefore, 3 EPO molecules representing the 3 generations of the drug and 2 confounding effects confusing the results interpretation were studied. These studies resulted in tangible applications for the laboratory, the best example of which being the C.E.R.A. assay, but also in scientific findings allowing to improve our comprehension of EPO doping in sport.