996 resultados para annual maximum flood series
Resumo:
United States federal agencies assess flood risk using Bulletin 17B procedures which assume annual maximum flood series are stationary. This represents a significant limitation of current flood frequency models as the flood distribution is thereby assumed to be unaffected by trends or periodicity of atmospheric/climatic variables and/or anthropogenic activities. The validity of this assumption is at the core of this thesis, which aims to improve understanding of the forms and potential causes of non-stationarity in flood series for moderately impaired watersheds in the Upper Midwest and Northeastern US. Prior studies investigated non-stationarity in flood series for unimpaired watersheds; however, as the majority of streams are located in areas of increasing human activity, relative and coupled impacts of natural and anthropogenic factors need to be considered such that non-stationary flood frequency models can be developed for flood risk forecasting over relevant planning horizons for large scale water resources planning and management.
Resumo:
This study aimed to describe the probabilistic structure of the annual series of extreme daily rainfall (Preabs), available from the weather station of Ubatuba, State of São Paulo, Brazil (1935-2009), by using the general distribution of extreme value (GEV). The autocorrelation function, the Mann-Kendall test, and the wavelet analysis were used in order to evaluate the presence of serial correlations, trends, and periodical components. Considering the results obtained using these three statistical methods, it was possible to assume the hypothesis that this temporal series is free from persistence, trends, and periodicals components. Based on quantitative and qualitative adhesion tests, it was found that the GEV may be used in order to quantify the probabilities of the Preabs data. The best results of GEV were obtained when the parameters of this function were estimated using the method of maximum likelihood. The method of L-moments has also shown satisfactory results.
Resumo:
Standard procedures for forecasting flood risk (Bulletin 17B) assume annual maximum flood (AMF) series are stationary, meaning the distribution of flood flows is not significantly affected by climatic trends/cycles, or anthropogenic activities within the watershed. Historical flood events are therefore considered representative of future flood occurrences, and the risk associated with a given flood magnitude is modeled as constant over time. However, in light of increasing evidence to the contrary, this assumption should be reconsidered, especially as the existence of nonstationarity in AMF series can have significant impacts on planning and management of water resources and relevant infrastructure. Research presented in this thesis quantifies the degree of nonstationarity evident in AMF series for unimpaired watersheds throughout the contiguous U.S., identifies meteorological, climatic, and anthropogenic causes of this nonstationarity, and proposes an extension of the Bulletin 17B methodology which yields forecasts of flood risk that reflect climatic influences on flood magnitude. To appropriately forecast flood risk, it is necessary to consider the driving causes of nonstationarity in AMF series. Herein, large-scale climate patterns—including El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and Atlantic Multidecadal Oscillation (AMO)—are identified as influencing factors on flood magnitude at numerous stations across the U.S. Strong relationships between flood magnitude and associated precipitation series were also observed for the majority of sites analyzed in the Upper Midwest and Northeastern regions of the U.S. Although relationships between flood magnitude and associated temperature series are not apparent, results do indicate that temperature is highly correlated with the timing of flood peaks. Despite consideration of watersheds classified as unimpaired, analyses also suggest that identified change-points in AMF series are due to dam construction, and other types of regulation and diversion. Although not explored herein, trends in AMF series are also likely to be partially explained by changes in land use and land cover over time. Results obtained herein suggest that improved forecasts of flood risk may be obtained using a simple modification of the Bulletin 17B framework, wherein the mean and standard deviation of the log-transformed flows are modeled as functions of climate indices associated with oceanic-atmospheric patterns (e.g. AMO, ENSO, NAO, and PDO) with lead times between 3 and 9 months. Herein, one-year ahead forecasts of the mean and standard deviation, and subsequently flood risk, are obtained by applying site specific multivariate regression models, which reflect the phase and intensity of a given climate pattern, as well as possible impacts of coupling of the climate cycles. These forecasts of flood risk are compared with forecasts derived using the existing Bulletin 17B model; large differences in the one-year ahead forecasts are observed in some locations. The increased knowledge of the inherent structure of AMF series and an improved understanding of physical and/or climatic causes of nonstationarity gained from this research should serve as insight for the formulation of a physical-casual based statistical model, incorporating both climatic variations and human impacts, for flood risk over longer planning horizons (e.g., 10-, 50, 100-years) necessary for water resources design, planning, and management.
Resumo:
Current procedures for flood risk estimation assume flood distributions are stationary over time, meaning annual maximum flood (AMF) series are not affected by climatic variation, land use/land cover (LULC) change, or management practices. Thus, changes in LULC and climate are generally not accounted for in policy and design related to flood risk/control, and historical flood events are deemed representative of future flood risk. These assumptions need to be re-evaluated, however, as climate change and anthropogenic activities have been observed to have large impacts on flood risk in many areas. In particular, understanding the effects of LULC change is essential to the study and understanding of global environmental change and the consequent hydrologic responses. The research presented herein provides possible causation for observed nonstationarity in AMF series with respect to changes in LULC, as well as a means to assess the degree to which future LULC change will impact flood risk. Four watersheds in the Midwest, Northeastern, and Central United States were studied to determine flood risk associated with historical and future projected LULC change. Historical single framed aerial images dating back to the mid-1950s were used along with Geographic Information Systems (GIS) and remote sensing models (SPRING and ERDAS) to create historical land use maps. The Forecasting Scenarios of Future Land Use Change (FORE-SCE) model was applied to generate future LULC maps annually from 2006 to 2100 for the conterminous U.S. based on the four IPCC-SRES future emission scenario conditions. These land use maps were input into previously calibrated Soil and Water Assessment Tool (SWAT) models for two case study watersheds. In order to isolate effects of LULC change, the only variable parameter was the Runoff Curve Number associated with the land use layer. All simulations were run with daily climate data from 1978-1999, consistent with the 'base' model which employed the 1992 NLCD to represent 'current' conditions. Output daily maximum flows were converted to instantaneous AMF series and were subsequently modeled using a Log-Pearson Type 3 (LP3) distribution to evaluate flood risk. Analysis of the progression of LULC change over the historic period and associated SWAT outputs revealed that AMF magnitudes tend to increase over time in response to increasing degrees of urbanization. This is consistent with positive trends in the AMF series identified in previous studies, although there are difficulties identifying correlations between LULC change and identified change points due to large time gaps in the generated historical LULC maps, mainly caused by unavailability of sufficient quality historic aerial imagery. Similarly, increases in the mean and median AMF magnitude were observed in response to future LULC change projections, with the tails of the distributions remaining reasonably constant. FORE-SCE scenario A2 was found to have the most dramatic impact on AMF series, consistent with more extreme projections of population growth, demands for growing energy sources, agricultural land, and urban expansion, while AMF outputs based on scenario B2 showed little changes for the future as the focus is on environmental conservation and regional solutions to environmental issues.
Resumo:
Interdisciplinary frameworks for studying natural hazards and their temporal trends have an important potential in data generation for risk assessment, land use planning, and therefore the sustainable management of resources. This paper focuses on the adjustments required because of the wide variety of scientific fields involved in the reconstruction and characterisation of flood events for the past 1000 years. The aim of this paper is to describe various methodological aspects of the study of flood events in their historical dimension, including the critical evaluation of old documentary and instrumental sources, flood-event classification and hydraulic modelling, and homogeneity and quality control tests. Standardized criteria for flood classification have been defined and applied to the Isère and Drac floods in France, from 1600 to 1950, and to the Ter, the Llobregat and the Segre floods, in Spain, from 1300 to 1980. The analysis on the Drac and Isère data series from 1600 to the present day showed that extraordinary and catastrophic floods were not distributed uniformly in time. However, the largest floods (general catastrophic floods) were homogeneously distributed in time within the period 1600¿1900. No major flood occurred during the 20th century in these rivers. From 1300 to the present day, no homogeneous behaviour was observed for extraordinary floods in the Spanish rivers. The largest floods were uniformly distributed in time within the period 1300-1900, for the Segre and Ter rivers.
Resumo:
Flood simulation models and hazard maps are only as good as the underlying data against which they are calibrated and tested. However, extreme flood events are by definition rare, so the observational data of flood inundation extent are limited in both quality and quantity. The relative importance of these observational uncertainties has increased now that computing power and accurate lidar scans make it possible to run high-resolution 2D models to simulate floods in urban areas. However, the value of these simulations is limited by the uncertainty in the true extent of the flood. This paper addresses that challenge by analyzing a point dataset of maximum water extent from a flood event on the River Eden at Carlisle, United Kingdom, in January 2005. The observation dataset is based on a collection of wrack and water marks from two postevent surveys. A smoothing algorithm for identifying, quantifying, and reducing localized inconsistencies in the dataset is proposed and evaluated showing positive results. The proposed smoothing algorithm can be applied in order to improve flood inundation modeling assessment and the determination of risk zones on the floodplain.
Resumo:
[1] Instrumental temperature series are often affected by artificial breaks (“break points”) due to (e.g.,) changes in station location, land-use, or instrumentation. The Swiss climate observation network offers a high number and density of stations, many long and relatively complete daily to sub-daily temperature series, and well-documented station histories (i.e., metadata). However, for many climate observation networks outside of Switzerland, detailed station histories are missing, incomplete, or inaccessible. To correct these records, the use of reliable statistical break detection methods is necessary. Here, we apply three statistical break detection methods to high-quality Swiss temperature series and use the available metadata to assess the methods. Due to the complex terrain in Switzerland, we are able to assess these methods under specific local conditions such as the Foehn or crest situations. We find that the temperature series of all stations are affected by artificial breaks (average = 1 break point / 48 years) with discrepancies in the abilities of the methods to detect breaks. However, by combining the three statistical methods, almost all of the detected break points are confirmed by metadata. In most cases, these break points are ascribed to a combination of factors in the station history.
Resumo:
Knowledge of intensity-duration-frequency (IDF) relationships of rainfall events is extremely important to determine the dimensions of surface drainage structures and soil erosion control. The purpose of this study was to obtain IDF equations of 13 rain gauge stations in the state of Santa Catarina in Brazil: Chapecó, Urussanga, Campos Novos, Florianópolis, Lages, Caçador, Itajaí, Itá, Ponte Serrada, Porto União, Videira, Laguna and São Joaquim. The daily rainfall data charts of each station were digitized and then the annual maximum rainfall series were determined for durations ranging from 5 to 1440 min. Based on these, with the Gumbel-Chow distribution, the maximum rainfall was estimated for durations ranging from 5 min to 24 h, considering return periods of 2, 5, 10, 20, 25, 50, and 100 years,. Data agreement with the Gumbel-Chow model was verified by the Kolmogorov-Smirnov test, at 5 % significance level. For each rain gauge station, two IDF equations of rainfall events were adjusted, one for durations from 5 to 120 min and the other from 120 to 1440 min. The results show a high variability in maximum intensity of rainfall events among the studied stations. Highest values of coefficients of variation in the annual maximum series of rainfall were observed for durations of over 600 min at the stations of the coastal region of Santa Catarina.
Resumo:
Determining the role of different precipitation periods for peak discharge generation is crucial for both projecting future changes in flood probability and for short- and medium-range flood forecasting. In this study, catchment-averaged daily precipitation time series are analyzed prior to annual peak discharge events (floods) in Switzerland. The high number of floods considered – more than 4000 events from 101 catchments have been analyzed – allows to derive significant information about the role of antecedent precipitation for peak discharge generation. Based on the analysis of precipitation times series, a new separation of flood-related precipitation periods is proposed: (i) the period 0 to 1 day before flood days, when the maximum flood-triggering precipitation rates are generally observed, (ii) the period 2 to 3 days before flood days, when longer-lasting synoptic situations generate "significantly higher than normal" precipitation amounts, and (iii) the period from 4 days to 1 month before flood days when previous wet episodes may have already preconditioned the catchment. The novelty of this study lies in the separation of antecedent precipitation into the precursor antecedent precipitation (4 days before floods or earlier, called PRE-AP) and the short range precipitation (0 to 3 days before floods, a period when precipitation is often driven by one persistent weather situation like e.g., a stationary low-pressure system). A precise separation of "antecedent" and "peak-triggering" precipitation is not attempted. Instead, the strict definition of antecedent precipitation periods permits a direct comparison of all catchments. The precipitation accumulating 0 to 3 days before an event is the most relevant for floods in Switzerland. PRE-AP precipitation has only a weak and region-specific influence on flood probability. Floods were significantly more frequent after wet PRE-AP periods only in the Jura Mountains, in the western and eastern Swiss plateau, and at the outlet of large lakes. As a general rule, wet PRE-AP periods enhance the flood probability in catchments with gentle topography, high infiltration rates, and large storage capacity (karstic cavities, deep soils, large reservoirs). In contrast, floods were significantly less frequent after wet PRE-AP periods in glacial catchments because of reduced melt. For the majority of catchments however, no significant correlation between precipitation amounts and flood occurrences is found when the last 3 days before floods are omitted in the precipitation amounts. Moreover, the PRE-AP was not higher for extreme floods than for annual floods with a high frequency and was very close to climatology for all floods. The fact that floods are not significantly more frequent nor more intense after wet PRE-AP is a clear indicator of a short discharge memory of Pre-Alpine, Alpine and South Alpine Swiss catchments. Our study poses the question whether the impact of long-term precursory precipitation for floods in such catchments is not overestimated in the general perception. The results suggest that the consideration of a 3–4 days precipitation period should be sufficient to represent (understand, reconstruct, model, project) Swiss Alpine floods.
Resumo:
The present Dissertation shows how recent statistical analysis tools and open datasets can be exploited to improve modelling accuracy in two distinct yet interconnected domains of flood hazard (FH) assessment. In the first Part, unsupervised artificial neural networks are employed as regional models for sub-daily rainfall extremes. The models aim to learn a robust relation to estimate locally the parameters of Gumbel distributions of extreme rainfall depths for any sub-daily duration (1-24h). The predictions depend on twenty morphoclimatic descriptors. A large study area in north-central Italy is adopted, where 2238 annual maximum series are available. Validation is performed over an independent set of 100 gauges. Our results show that multivariate ANNs may remarkably improve the estimation of percentiles relative to the benchmark approach from the literature, where Gumbel parameters depend on mean annual precipitation. Finally, we show that the very nature of the proposed ANN models makes them suitable for interpolating predicted sub-daily rainfall quantiles across space and time-aggregation intervals. In the second Part, decision trees are used to combine a selected blend of input geomorphic descriptors for predicting FH. Relative to existing DEM-based approaches, this method is innovative, as it relies on the combination of three characteristics: (1) simple multivariate models, (2) a set of exclusively DEM-based descriptors as input, and (3) an existing FH map as reference information. First, the methods are applied to northern Italy, represented with the MERIT DEM (∼90m resolution), and second, to the whole of Italy, represented with the EU-DEM (25m resolution). The results show that multivariate approaches may (a) significantly enhance flood-prone areas delineation relative to a selected univariate one, (b) provide accurate predictions of expected inundation depths, (c) produce encouraging results in extrapolation, (d) complete the information of imperfect reference maps, and (e) conveniently convert binary maps into continuous representation of FH.
Resumo:
A regional envelope curve (REC) of flood flows summarises the current bound on our experience of extreme floods in a region. RECs are available for most regions of the world. Recent scientific papers introduced a probabilistic interpretation of these curves and formulated an empirical estimator of the recurrence interval T associated with a REC, which, in principle, enables us to use RECs for design purposes in ungauged basins. The main aim of this work is twofold. First, it extends the REC concept to extreme rainstorm events by introducing the Depth-Duration Envelope Curves (DDEC), which are defined as the regional upper bound on all the record rainfall depths at present for various rainfall duration. Second, it adapts the probabilistic interpretation proposed for RECs to DDECs and it assesses the suitability of these curves for estimating the T-year rainfall event associated with a given duration and large T values. Probabilistic DDECs are complementary to regional frequency analysis of rainstorms and their utilization in combination with a suitable rainfall-runoff model can provide useful indications on the magnitude of extreme floods for gauged and ungauged basins. The study focuses on two different national datasets, the peak over threshold (POT) series of rainfall depths with duration 30 min., 1, 3, 9 and 24 hrs. obtained for 700 Austrian raingauges and the Annual Maximum Series (AMS) of rainfall depths with duration spanning from 5 min. to 24 hrs. collected at 220 raingauges located in northern-central Italy. The estimation of the recurrence interval of DDEC requires the quantification of the equivalent number of independent data which, in turn, is a function of the cross-correlation among sequences. While the quantification and modelling of intersite dependence is a straightforward task for AMS series, it may be cumbersome for POT series. This paper proposes a possible approach to address this problem.
Resumo:
Continuous black carbon (BC) observations were conducted from 1999 through 2009 by an Aethalometer (AE10) and from 2006 through 2011 by a Multi-Angle Absorption Photometer (MAAP) at Neumayer Station (NM) under stringent contamination control. Considering the respective observation period, BC concentrations measured by the MAAP were somewhat higher (median ± standard deviation: 2.1 ± 2.0 ng/m**3) compared to the AE10 results (1.6 ± 2.1 ng/m**3). Neither for the AE10 nor for the MAAP data set a significant long-term trend could be detected. Consistently a pronounced seasonality was observed with both instruments showing a primary annual maximum between October and November and a minimum in April with a maximum/minimum ratio of 4.5/1.6 = 3.8 and 2.7/0.64 = 4.2 for the MAAP and AE10 data, respectively. Occasionally a secondary summer maximum in January/February was visible. With the aim to assess the impact of BC on optical properties of the aerosol at NM, we evaluated the BC data along with particle scattering coefficients measured by an integrating nephelometer. We found the mean single scattering albedo of w550 = 0.992 ± 0.0090 (median: 0.994) at a wavelength of 550 nm with a range of values from 0.95 to 1.0.