910 resultados para amorphous titanate


Relevância:

60.00% 60.00%

Publicador:

Resumo:

First-principles quantum-mechanical techniques, based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and deformed asymmetric models for Ba0.5Sr 0.5TiO3. Electronic properties are analyzed and the relevance of the present theoretical and experimental results on the photoluminescence behavior is discussed. The presence of localized electronic levels in the band gap, due to the symmetry break, would be responsible for the visible photoluminescence of the amorphous state at room temperature. Thin films were synthesized following a soft chemical processing. Their structure was confirmed by x-ray data and the corresponding photoluminescence properties measured.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article reports on a new and swift hydrothermal chemical route to prepare titanate nanostructures (TNS) avoiding the use of crystalline TiO2 as starting material. The synthesis approach uses a commercial solution of TiCl3 as titanium source to prepare an amorphous precursor, circumventing the use of hazardous chemical compounds. The influence of the reaction temperature and dwell autoclave time on the structure and morphology of the synthesised materials was studied. Homogeneous titanate nanotubes with a high length/diameter aspect ratio were synthesised at 160 degrees C and 24 h. A band gap of 3.06 +/- 0.03 eV was determined for the TNS samples prepared in these experimental conditions. This value is red shifted by 0.14 eV compared to the band gap value usually reported for the TiO2 anatase. Moreover, such samples show better adsorption capacity and photocatalytic performance on the dye rhodamine 6G (R6G) photodegradation process than TiO2 nanoparticles. A 98% reduction of the R6G concentration was achieved after 45 min of irradiation of a 10 ppm dye aqueous solution and 1 g L-1 of TNS catalyst.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We discuss the nature of visible photoluminescence at room temperature in amorphous lead titanate in the light of the results of recent experimental and theoretical calculations. Experimental results obtained by XANES and EXAFS revealed that amorphous lead titanate is composed of a Ti-O network having fivefold Ti coordination and NBO-type (non-bridging oxygen) defects. These defects can modify the electronic structure of amorphous compounds. Our calculation of the electronic structure involved the use of first-principle molecular calculations to simulate the variation of the electronic structure in the lead titanate crystalline phase, which is known to have a direct band gap, and we also made an in-depth examination of amorphous lead titanate. The results of our theoretical calculations of amorphous lead titanate indicate that the formation of fivefold coordination in the amorphous system may introduce delocalized electronic levels in the HOMO ( highest occupied molecular orbital) and the LUMO ( lowest unoccupied molecular orbital). A comparison of the experimental and theoretical results of amorphous compounds suggests the possibility of a radiative recombination (electron-hole pairs), which may be responsible for the emission of photoluminescence. (C) 2003 Kluwer Academic Publishers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Photoluminescence at room temperature was observed in amorphous zirconium titanate obtained from the polymeric precursor method. This was the first time in which PL was noticed in an amorphous compound made of two network formers. The PL spectra could be deconvoluted into two bands, whose center 1 was located from 540 nm to 552 nm and center 2 from 625 nm to 641 nm. The co-existence of fivefold and sixfold oxygen coordination of titanium and/or zirconium could be the origin of the radiative recombination of electron-hole pairs in amorphous ZT, which may be responsible for the emission of the photoluminescence.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The crystallization process of lead titanate (PT) prepared using the polymeric precursor method was investigated using X-ray diffractometry, Raman spectroscopy, electron microscopy, and X-ray absorption spectroscopy techniques. The results showed that amorphous PT was formed by an O-Ti-O structure composed of fivefold and sixfold oxygen-coordinated titanium. The local structure of the amorphous PT phase was similar to that of the cubic PT phase, i.e., similar coordination number and similar bond lengths, leading to a topotactic-like transformation during the phase transformation from amorphous to cubic perovskite PT. Because of the low crystallization temperature, every transformation observed during the crystallization process was associated with a short-range rearrangement process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The phase evolution of lead titanate processed by the polymeric precursor method was investigated by thermal analysis, X-ray diffraction, and high-resolution transmission electron microscopy. The results showed that the cubic perovskite PbTiO3 (PT) phase is formed from an inorganic amorphous precursor at a temperature of 444 °C. A gradual transition from cubic to tetragonal perovskite PT was observed with the increase of calcination time at this temperature. HRTEM results showed that the cubic PT particles have a size of around 5 nm. The identification of cubic PT as an intermediate phase supports the hypothesis that the chemical homogeneity was kept at the molecular level during the synthesis process, with no cation segregation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agência Financiadora - Fundação para a Ciência e Tecnologia - PTDC/CTM NAN/113021/2009

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intense photoluminescence in highly disordered strontium titanate amorphous thin films prepared by the polymeric precursor method was observed at room temperature (300 K). The luminescence spectra of SrTiO3 amorphous thin films at room temperature revealed an intense single-emission band in the visible region. X-ray absorption near edge structure was used to probe the local atomic structure of SrTiO3 amorphous and crystalline thin films. Photoluminescence intensity in the 535 nm range was found to be correlated with the presence of non-bridging oxygen defects. A discussion is presented of the nature of this photoluminescence, which may be related to the disordered structure in SrTiO3 amorphous thin films. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims to describe the synthesis of the semi-crystalline and crystalline powder of lanthanum doped with zirconium titanate (65/35), LZT through Pechini method. The analysis done by Raman demonstrated that semi-crystalline phase at 550 degrees C and crystalline phase after 600 degrees C were formed. The XRD pattern shows the ZrTiO4 phase formation demonstrating that La substitutions into the lattice take place. The calcined powder at different temperatures shows a semi-crystalline phase presenting photoluminescence effect when processed at low temperatures. From 300 to 400 degrees C a broadband is observed at 563 nm and 568 nm, respectively. Defects creation such as: Zr3+ center dot Vo(center dot center dot) and Ti3+ - V-O(center dot center dot), Zr and Ti replaced by La with vacancy formation, impurities and imperfections contributed to the photoluminescence effect. However, the main emission is due to a reverse Ti4+ -> O2- or/and Zr4+ -> O2- transition that occur within a regular titanate or zirconate eight-fold coordination [BO8-delta], B = Zr4+, Ti4+. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bismuth titanate, Bi(4)Ti(3)O(12) (BIT) nanosized powders have been successfully synthesized via high energy mechanochemical activation. The phase formation of BIT, crystal structure, microstructure, crystallite size and specific surface area were followed by XRD, scanning electron microscopy (SEM) and the BET specific surface area measurements. The BIT milled 2 h shows the orthorhombic crystalline structure with small amount of amorphous phase. The microstructure of Bi(4)Ti(3)O(12) ceramics sintered at 1000 degrees C for 12h exhibit plate-like grain structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amorphous and crystalline powder of PLT phase was synthesized by using the Pechini method. Infrared (FTIR) analysis of the polymeric resin shows intense bands of organic materials from 250 to 1620 cm(-1). X-ray diffraction (XRD) and Raman spectra of calcined powder at different temperatures show amorphous phase at 450 degrees C/3 h, semi-crystalline phase at 550 degrees C/3 h and a crystalline phase at 800 degrees C/3 h. Luminescence effect was observed in amorphous powder calcined from 300 to 350 degrees/3 h with broad absorption peaks in 579 nm at 300 degrees C/3 h and 603 rum at 350 degrees C/3 h, respectively. The photoluminescence effect is attributed to emissions of Ti -> 0 directly from the oxygen 2p orbital (valence band) to the titanate 3d orbital (conduction bands). (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Room-temperature photoluminescence (PL) was observed in undoped and 2 mol% Cr-, Al- and Y-doped amorphous SrTiO3 thin films. Doping increased the PL, and in the case of Cr significantly reduced the associated PL wavelength. The optical bandgaps, calculated by means of UV-vis absorption spectra, increased with crystallinity and decreased with the doping level. It was considered that yttrium and aluminum substituted Sr2+, whereas chromium replaced Ti4+. It is believed that luminescence centers are oxygen-deficient BO6 complexes, or the same centers with some other defects, such as oxygen or strontium vacancies, or BO6 complexes with some other defects placed in their neighborhood. The character of excitation and the competition for negatively charged non-bridging oxygen (NBO) among numerous types of BO6 defect complexes in doped SrTiO3 results in various broadband luminescence peak positions. The results herein reported are an indicative that amorphous titanates are sensitive to doping, which is important for the control of the electro-optic properties of these materials. The probable incorporation of Cr into the Ti site suggests that the existence of a double network former can lead to materials displaying a more intense photoluminescence.