62 resultados para allopurinol
Resumo:
RATIONALE: This study assessed the efficacy and safety of canakinumab, a fully human anti-interleukin-1beta monoclonal antibody, for prophylaxis against acute gouty arthritis flares in patients initiating uratelowering therapy.METHODS: In this double-blind, double-dummy, dose-ranging study, 432 patients with gouty arthritis initiating allopurinol therapy were randomised 1:1:1:1:1:1:2 to receive: a single dose of canakinumab, 25, 50, 100, 200, or 300 mg subcutaneously (sc); four 4-weekly doses of canakinumab (50150125125 mg sc); or daily colchicine 0.5 mg orally for 16 weeks. Patients recorded details of flares in diaries. The study aimed to determine the canakinumab dose having equivalent efficacy to colchicine 0.5 mg at 16 weeks.RESULTS: A dose-response for canakinumab was not apparent with any of the four pre-defined dose-responsemodels. The estimated canakinumab dose with equivalent efficacy to colchicinewas belowthe range of doses tested.At 16 weeks, therewas a 62-72% reduction in themean number of flares per patient for canakinumab doses >50 mg vs colchicine based on a negative binomial model (rate ratio: 0.28-0.38, p50.0083), and the percentage of patients experiencing >1 flarewas significantly lower for all canakinumab doses (15- 27%) vs colchicine (44%, p<0.05). Therewas a 64-72%reduction in the risk of experiencing >1 flare for canakinumab doses >50 mg vs colchicine at 16 weeks (hazard ratio: 0.28-0.36, p50.05). The incidence of adverse events was similar across treatment groups.CONCLUSIONS: Single canakinumab doses >50 mg or four 4-weekly doses provided superior prophylaxis against flares compared with daily colchicine 0.5 mg.
Resumo:
In this study, we investigated the effect of the xanthine oxidase (XO) inhibitor, allopurinol (ALP), on cardiac dysfunction, oxidative-nitrosative stress, apoptosis, poly(ADP-ribose) polymerase (PARP) activity and fibrosis associated with diabetic cardiomyopathy in mice. Diabetes was induced in C57/BL6 mice by injection of streptozotocin. Control and diabetic animals were treated with ALP or placebo. Left ventricular systolic and diastolic functions were measured by pressure-volume system 10 weeks after established diabetes. Myocardial XO, p22(phox), p40(phox), p47(phox), gp91(phox), iNOS, eNOS mRNA and/or protein levels, ROS and nitrotyrosine (NT) formation, caspase3/7 and PARP activity, chromatin fragmentation and various markers of fibrosis (collagen-1, TGF-beta, CTGF, fibronectin) were measured using molecular biology and biochemistry methods or immunohistochemistry. Diabetes was characterized by increased myocardial, liver and serum XO activity (but not expression), increased myocardial ROS generation, p22(phox), p40(phox), p47(phox), p91(phox) mRNA expression, iNOS (but not eNOS) expression, NT generation, caspase 3/7 and PARP activity/expression, chromatin fragmentation and fibrosis (enhanced accumulation of collagen, TGF-beta, CTGF and fibronectin), and declined systolic and diastolic myocardial performance. ALP attenuated the diabetes-induced increased myocardial, liver and serum XO activity, myocardial ROS, NT generation, iNOS expression, apoptosis, PARP activity and fibrosis, which were accompanied by improved systolic (measured by the evaluation of both load-dependent and independent indices of myocardial contractility) and diastolic performance of the hearts of treated diabetic animals. Thus, XO inhibition with ALP improves type 1 diabetes-induced cardiac dysfunction by decreasing oxidative/nitrosative stress and fibrosis, which may have important clinical implications for the treatment and prevention of diabetic cardiomyopathy and vascular dysfunction.
Resumo:
Background: Gout patients initiating urate lowering therapy have an increased risk of flares. Inflammation in gouty arthritis is induced by IL-1b. Canakinumab targets and inhibits IL-1b effectively in clinical studies. This study compared different doses of canakinumab vs colchicine in preventing flares in gout patients initiating allopurinol therapy.Methods: In this 24 week double blind study, gout patients (20-79 years) initiating allopurinol were randomized (1:1:1:1:1:1:2) to canakinumab s.c. single doses of 25, 50, 100, 200, 300 mg, or 150 mg divided in doses every 4 weeks (50+50+25+25 mg [q4wk]) or colchicine 0.5 mg p.o. daily for 16 weeks. Primary outcome was to determine the canakinumab dose giving comparable efficacy to colchicine with respect to the number of gout flares occurring during first 16 weeks. Secondary outcomes included number of patients with gout flares and C-reactive protein (CRP) levels during the first 16 weeks.Results: 432 patients were randomized and 391 (91%) completed the study. All canakinumab doses were better than colchicine in preventing flares and therefore, a canakinumab dose comparable to colchicine could not be determined. Based on a negative binomial model, all canakinumab groups, except 25 mg, reduced the flare rate ratio per patient significantly compared to colchicine group (rate ratio estimates 25 mg 0.60, 50 mg 0.34, 100 mg 0.28, 200 mg 0.37, 300 mg 0.29, q4wk 0.38; p<=0.05). The percentage of patients with flares was lower for all canakinumab groups (25 mg 27.3%, 50 mg 16.7%, 100 mg 14.8%, 200 mg 18.5%, 300 mg 15.1%, q4wk 16.7%) compared to colchicine group (44.4%). All patients taking canakinumab were significantly less likely to experience at least one gout flare than patients taking colchicine (odds ratio range [0.22 - 0.47]; p<=0.05 for all). The median baseline CRP levels were 2.86 mg/L for 25 mg, 3.42 mg/L for 50 mg, 1.76 mg/L for 100 mg, 3.66 mg/L for 200 mg, 3.21 mg/L for 300 mg, 3.23 mg/L for q4wk canakinumab groups and 2.69 mg/L for colchicine group. In all canakinumab groups with median CRP levels above the normal range at baseline, median levels declined within 15 days of treatment and were maintained at normal levels (ULN=3 mg/L) throughout the 16 week period. Adverse events (AEs) occurred in 52.7% (25 mg), 55.6% (50 mg), 51.9% (100 mg), 51.9% (200 mg), 54.7% (300 mg), and 58.5% (q4wk) of patients on canakinumab vs 53.7% of patients on colchicine. Serious AEs (SAE) were reported in 2 (3.6%; 25 mg), 2 (3.7%, 50 mg), 3 (5.6%, 100 mg), 3 (5.6%, 200 mg), 3 (5.7%, 300 mg) and 1 (1.9%, q4wk) patients on canakinumab and in 5 (4.6%) patients on colchicine. One fatal SAE (myocardial infarction, not related to study drug) occurred in colchicine group.Conclusion: In this large randomized, double-blind active controlled study of flare prevention in gout patients initiating allopurinol therapy, treatment with canakinumab led to a statistically significant reduction in flares compared with colchicine (standard of care), and was well tolerated.
Resumo:
Objective This study assessed the efficacy and safety of canakinumab, a fully human anti-interleukin 1 beta monoclonal antibody, for prophylaxis against acute gouty arthritis flares in patients initiating urate-lowering treatment.Methods In this double-blind, double-dummy, dose-ranging study, 432 patients with gouty arthritis initiating allopurinol treatment were randomised 1:1:1:1:1:1:2 to receive: a single dose of canakinumab, 25, 50, 100, 200, or 300 mg subcutaneously; 4 x 4-weekly doses of canakinumab (50 + 50 + 25 + 25 mg subcutaneously); or daily colchicine 0.5 mg orally for 16 weeks. Patients recorded details of flares in diaries. The study aimed to determine the canakinumab dose having equivalent efficacy to colchicine 0.5 mg at 16 weeks.Results A dose-response for canakinumab was not apparent with any of the four predefined dose-response models. The estimated canakinumab dose with equivalent efficacy to colchicine was below the range of doses tested. At 16 weeks, there was a 62% to 72% reduction in the mean number of flares per patient for canakinumab doses >= 50 mg versus colchicine based on a negative binomial model (rate ratio: 0.28-0.38, p <= 0.0083), and the percentage of patients experiencing >= 1 flare was significantly lower for all canakinumab doses (15% to 27%) versus colchicine (44%, p<0.05). There was a 64% to 72% reduction in the risk of experiencing >= 1 flare for canakinumab doses >= 50 mg versus colchicine at 16 weeks (hazard ratio (HR): 0.28-0.36, p <= 0.05). The incidence of adverse events was similar across treatment groups.Conclusions Single canakinumab doses >= 50 mg or four 4-weekly doses provided superior prophylaxis against flares compared with daily colchicine 0.5 mg.
Resumo:
Background: Gout patients initiating urate lowering therapy have an increased risk of flares. Inflammation in gouty arthritis is induced by IL-1b. Canakinumab targets and inhibits IL-1b effectively in clinical studies. This study compared different doses of canakinumab vs colchicine in preventing flares in gout patients initiating allopurinol therapy.Methods: In this 24 week double blind study, gout patients (20-79 years) initiating allopurinol were randomized (1:1:1:1:1:1:2) to canakinumab s.c. single doses of 25, 50, 100, 200, 300 mg, or 150 mg divided in doses every 4 weeks (50+50+25+25 mg [q4wk]) or colchicine 0.5 mg p.o. daily for 16 weeks. Primary outcome was to determine the canakinumab dose giving comparable efficacy to colchicine with respect to the number of gout flares occurring during first 16 weeks. Secondary outcomes included number of patients with gout flares and C-reactive protein (CRP) levels during the first 16 weeks.Results: 432 patients were randomized and 391 (91%) completed the study. All canakinumab doses were better than colchicine in preventing flares and therefore, a canakinumab dose comparable to colchicine could not be determined. Based on a negative binomial model, all canakinumab groups, except 25 mg, reduced the flare rate ratio per patient significantly compared to colchicine group (rate ratio estimates 25 mg 0.60, 50 mg 0.34, 100 mg 0.28, 200 mg 0.37, 300 mg 0.29, q4wk 0.38; p<=0.05). The percentage of patients with flares was lower for all canakinumab groups (25 mg 27.3%, 50 mg 16.7%, 100 mg 14.8%, 200 mg 18.5%, 300 mg 15.1%, q4wk 16.7%) compared to colchicine group (44.4%). All patients taking canakinumab were significantly less likely to experience at least one gout flare than patients taking colchicine (odds ratio range [0.22 - 0.47]; p<=0.05 for all). The median baseline CRP levels were 2.86 mg/L for 25 mg, 3.42 mg/L for 50 mg, 1.76 mg/L for 100 mg, 3.66 mg/L for 200 mg, 3.21 mg/L for 300 mg, 3.23 mg/L for q4wk canakinumab groups and 2.69 mg/L for colchicine group. In all canakinumab groups with median CRP levels above the normal range at baseline, median levels declined within 15 days of treatment and were maintained at normal levels (ULN=3 mg/L) throughout the 16 week period. Adverse events (AEs) occurred in 52.7% (25 mg), 55.6% (50 mg), 51.9% (100 mg), 51.9% (200 mg), 54.7% (300 mg), and 58.5% (q4wk) of patients on canakinumab vs 53.7% of patients on colchicine. Serious AEs (SAE) were reported in 2 (3.6%; 25 mg), 2 (3.7%, 50 mg), 3 (5.6%, 100 mg), 3 (5.6%, 200 mg), 3 (5.7%, 300 mg) and 1 (1.9%, q4wk) patients on canakinumab and in 5 (4.6%) patients on colchicine. One fatal SAE (myocardial infarction, not related to study drug) occurred in colchicine group.Conclusion: In this large randomized, double-blind active controlled study of flare prevention in gout patients initiating allopurinol therapy, treatment with canakinumab led to a statistically significant reduction in flares compared with colchicine (standard of care), and was well tolerated.
Resumo:
The role of superoxide in adriamycin-induced nephropathy (single dose; i.v. 3 mg/kg) has been studied by blocking superoxide synthesis through the administration of allopurinol (500 mg/L in drinking water). In Experiment I (EI), allopurinol administration was started 3 days prior to nephropathy induction and continued until day 14. In Experiment II (EII) allopurinol administration was started 2 weeks after nephropathy induction and was maintained until the end of the experiment (26 weeks). Affected glomeruli frequency and tubulointerstitial lesion index (TILI) were determined at Weeks 2 and 4 (EI) and Week 26 (EII). In EI, and 24 h mean proteinuria in the nephrotic control group (NCG-I) differed from that of the treated nephrotic group (TNG-I) at Week 1 (TNG = 33.3 ± 6.39 mg/24 h; NCG = 59.8 ± 6.3 mg/24 h; p < 0.05) and 2 (NCG-I = 80.0 ± 17.5 mg/24h; TNG-I = 49.1 ± 8.4 mg/24 h; p < 0.05). No glomerular alterations were observed and TILI medians were not different in both nephrotic groups at week 2 (NCG-I = 1+: TNG = 1+) and 4 (NCG = 4+; TNG = 4+). In EII, NCG-II and TNG-II presented different 24 h proteinuria values only at Week 6, (136.91 ± 22.23 mg/24 h ad 72.66 ± 10.72 mg/24 h, respectively; p < 0.05). Between nephrotic groups, there was no statistical difference in the median of affected glomeruli (CNG-II = 56%; TNG-II = 48% and TILI (NCG-II = 8+; TNG-II = 9+). Thus, allopurinol was associated with a transient reduction in proteinuria and it did not alter the progression of the nephropathy.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aiming to assess the efficacy of the treatment, to verify the occurrence of possible disease relapses and to search for the presence of parasites after the treatment, seven dogs naturally infected by Leishmania sp., were submitted to a treatment with meglumine antimoniate and allopurinol. For this, lymph node and bone marrow aspiration biopsies were carried out at seven moments. After the end of the six-month observation period all dogs were submitted to euthanasia. Then, spleen and liver “imprints” and in vitro cultures were carried out to search for amastigote forms of the parasite. All animals presented remission of the symptoms and during all the observation period no dog presented relapse of the disease, although amastigote forms of the parasite were observed in two of the animals at the end of the experiment. Thus, it was possible to conclude that the treatment promotes clinical healing but it does not eliminate the parasites completely.
Resumo:
BACKGROUND Allopurinol is a main cause of severe cutaneous adverse reactions (SCAR). How allopurinol induces hypersensitivity remains unknown. Pre-disposing factors are the presence of the HLA-B*58:01 allele, renal failure and possibly the dose taken. OBJECTIVE Using an in vitro model, we sought to decipher the relationship among allopurinol metabolism, HLA-B*58:01 phenotype and drug concentrations in stimulating drug-specific T cells. METHODS Lymphocyte transformation test (LTT) results of patients who had developed allopurinol hypersensitivity were analysed. We generated allopurinol or oxypurinol-specific T cell lines (ALP/OXP-TCLs) from allopurinol naïve HLA-B*58:01(+) and HLA-B*58:01(-) individuals using various drug concentrations. Their reactivity patterns were analysed by flow cytometry and (51) Cr release assay. RESULTS Allopurinol allergic patients are primarily sensitized to oxypurinol in a dose-dependent manner. TCL induction data show that both the presence of HLA-B*58:01 allele and high concentration of drug are important for the generation of drug-specific T cells. The predominance of oxypurinol-specific lymphocyte response in allopurinol allergic patients can be explained by the rapid conversion of allopurinol to oxypurinol in vivo rather than to its intrinsic immunogenicity. OXP-TCLs do not recognize allopurinol and vice versa. Finally, functional avidity of ALP/OXP-TCL is dependent on both the induction dose and HLA-B*58:01 status. CONCLUSIONS AND CLINICAL RELEVANCE This study establishes the important synergistic role of drug concentration and HLA-B*58:01 allele in the allopurinol or oxypurinol-specific T cell responses. Despite the prevailing dogma that Type B adverse drug reactions are dose independent, allopurinol hypersensitivity is primarily driven by oxypurinol-specific T cell response in a dose-dependent manner, particular in the presence of HLA-B*58:01 allele.
Resumo:
Acute renal failure commonly follows reduced renal perfusion or ischemia. Reperfusion is essential for recovery but can itself cause functional and structural injury to the kidney. The separate contributions of ischemia and of reperfusion were examined in the isolated perfused rat kidney. Three groups were studied: brief (5 min) ischemia, 20 min ischemia, and repetitive brief ischemia (4 periods of 5 min) with repetitive intervening reperfusion of 5 min. A control group had no intervention, the three ischemia groups were given a baseline perfusion of 30 min before intervention and all groups were perfused for a total of 80 min. In addition, the effects of exogenous (NO)-N-. from sodium nitroprusside and xanthine oxidase inhibition by allopurinol were assessed in the repetitive brief ischemia-reperfusion model. Brief ischemia produced minimal morphological injury with near normal functional recovery. Repetitive brief ischemia reperfusion caused less functional and morphological injury than an equivalent single period of ischemia (20 min) suggesting that intermittent reperfusion is less injurious than ischemia alone over the time course of study. Pretreatment with allopurinol improved renal function after repetitive brief ischemia-reperfusion compared with the allopurinol-untreated repetitive brief ischemia-reperfusion group. Similarly, sodium nitroprusside reduced renal vascular resistance but did not improve the glomerular filtration rate or sodium reabsorption in the repetitive brief ischemia-reperfusion model. Thus, these studies show that the duration of uninterrupted ischemia is more critical than reperfusion in determining the extent of renal ischemia-reperfusion injury and that allopurinol, in particular, counteracts the oxidative stress of reperfusion.