979 resultados para advanced oxidative processes
Resumo:
Abstract Background The use of lignocellulosic constituents in biotechnological processes requires a selective separation of the main fractions (cellulose, hemicellulose and lignin). During diluted acid hydrolysis for hemicellulose extraction, several toxic compounds are formed by the degradation of sugars and lignin, which have ability to inhibit microbial metabolism. Thus, the use of a detoxification step represents an important aspect to be considered for the improvement of fermentation processes from hydrolysates. In this paper, we evaluated the application of Advanced Oxidative Processes (AOPs) for the detoxification of rice straw hemicellulosic hydrolysate with the goal of improving ethanol bioproduction by Pichia stipitis yeast. Aiming to reduce the toxicity of the hemicellulosic hydrolysate, different treatment conditions were analyzed. The treatments were carried out according to a Taguchi L16 orthogonal array to evaluate the influence of Fe+2, H2O2, UV, O3 and pH on the concentration of aromatic compounds and the fermentative process. Results The results showed that the AOPs were able to remove aromatic compounds (furan and phenolic compounds derived from lignin) without affecting the sugar concentration in the hydrolysate. Ozonation in alkaline medium (pH 8) in the presence of H2O2 (treatment A3) or UV radiation (treatment A5) were the most effective for hydrolysate detoxification and had a positive effect on increasing the yeast fermentability of rice straw hemicellulose hydrolysate. Under these conditions, the higher removal of total phenols (above 40%), low molecular weight phenolic compounds (above 95%) and furans (above 52%) were observed. In addition, the ethanol volumetric productivity by P. stipitis was increased in approximately twice in relation the untreated hydrolysate. Conclusion These results demonstrate that AOPs are a promising methods to reduce toxicity and improve the fermentability of lignocellulosic hydrolysates.
Resumo:
Oxalic and oxamic acids are the ultimate and more persistent by-products of the degradation of N-aromatics by electrochemical advanced oxidation processes (EAOPs). In this paper, the kinetics and oxidative paths of these acids have been studied for several EAOPs using a boron-doped diamond (BDD) anode and a stainless steel or an air-diffusion cathode. Anodic oxidation (AO-BDD) in the presence of Fe2+ (AO-BDD-Fe2+) and under UVA irradiation (AO-BDD-Fe2+-UVA), along with electro-Fenton (EF-BDD), was tested. The oxidation of both acids and their iron complexes on BDD was clarified by cyclic voltammetry. AO-BDD allowed the overall mineralization of oxalic acid, but oxamic acid was removed much more slowly. Each acid underwent a similar decay in AO-BDD-Fe2+ and EFBDD, as expected if its iron complexes were not attacked by hydroxyl radicals in the bulk. The faster and total mineralization of both acids was achieved in AO-BDD-Fe2+-UVA due to the high photoactivity of their Fe(III) complexes that were continuously regenerated by oxidation of their Fe(II) complexes. Oxamic acid always released a larger proportion of NH4 + than NO3- ion, as well as volatile NOx species. Both acids were independently oxidized at the anode in AO-BDD, but in AO-BDD-Fe2+-UVA oxamic acid was more slowlydegraded as its content decreased, without significant effect on oxalic acid decay. The increase in current density enhanced the oxidation power of the latter method, with loss of efficiency. High Fe2+ contents inhibited the oxidation of Fe(II) complexes by the competitive oxidation of Fe2+ to Fe3+. Low current densities and Fe2+ contents are preferable to remove more efficiently these acids by the most potent AO-BDD-Fe2+-UVA method.
Resumo:
Abstract Background Biofuels produced from sugarcane bagasse (SB) have shown promising results as a suitable alternative of gasoline. Biofuels provide unique, strategic, environmental and socio-economic benefits. However, production of biofuels from SB has negative impact on environment due to the use of harsh chemicals during pretreatment. Consecutive sulfuric acid-sodium hydroxide pretreatment of SB is an effective process which eventually ameliorates the accessibility of cellulase towards cellulose for the sugars production. Alkaline hydrolysate of SB is black liquor containing high amount of dissolved lignin. Results This work evaluates the environmental impact of residues generated during the consecutive acid-base pretreatment of SB. Advanced oxidative process (AOP) was used based on photo-Fenton reaction mechanism (Fenton Reagent/UV). Experiments were performed in batch mode following factorial design L9 (Taguchi orthogonal array design of experiments), considering the three operation variables: temperature (°C), pH, Fenton Reagent (Fe2+/H2O2) + ultraviolet. Reduction of total phenolics (TP) and total organic carbon (TOC) were responsive variables. Among the tested conditions, experiment 7 (temperature, 35°C; pH, 2.5; Fenton reagent, 144 ml H2O2+153 ml Fe2+; UV, 16W) revealed the maximum reduction in TP (98.65%) and TOC (95.73%). Parameters such as chemical oxygen demand (COD), biochemical oxygen demand (BOD), BOD/COD ratio, color intensity and turbidity also showed a significant change in AOP mediated lignin solution than the native alkaline hydrolysate. Conclusion AOP based on Fenton Reagent/UV reaction mechanism showed efficient removal of TP and TOC from sugarcane bagasse alkaline hydrolysate (lignin solution). To the best of our knowledge, this is the first report on statistical optimization of the removal of TP and TOC from sugarcane bagasse alkaline hydrolysate employing Fenton reagent mediated AOP process.
Resumo:
Las reacciones bioquímicas que ocurren como consecuencia del tratamiento y almacenamiento de los alimentos, mejoran la seguridad alimentaria, las propiedades sensoriales y la vida útil. Sin embargo, el tratamiento térmico, la exposición a la luz y el oxígeno pueden causar daño oxidativo a los lípidos y proteínas. Los procesos oxidativos de matrices complejas tienen características distintivas que no se manifiestan cuando los componentes son sometidos a oxidación individualmente. La hipótesis de trabajo es que la oxidación de proteínas en matrices alimentarias complejas altera la estructura y las propiedades funcionales de las proteínas y, que las modificaciones que se producen varían según las condiciones de procesamiento y de la composición química del alimento. Nuestros estudios intentan demostrar que el estado oxidativo de las proteínas de un alimento es un parámetro importante para la evaluación de las propiedades funcionales, sensoriales y nutricionales de un producto lácteo. El objetivo general del proyecto es el estudio de los procesos de oxidación de matrices alimentarias complejas (la leche, miel) y su relación con distintos procesos y materiales utilizados en la industria. Es decir, nos proponemos estudiar las consecuencias funcionales y biológicas (calidad nutricional, coagulación) de la oxidación proteica en modelos experimentales “in vitro” y en productos comerciales. 1. Estudiar los fenómenos de peroxidación proteica en leche entera y descremada sometida a los distintos procesos tecnológicos de la producción de leche y queso a escala laboratorio. Se realizarán las mismas experiencias con albúmina sérica y con proteínas aisladas de suero de leche para comparar diferencias entre una matriz compleja y una simple. 2. Determinar la relación entre oxidación y composición proteica de la leche, y los cambios en las fracciones proteicas aisladas (caseínas y beta-lactoglobulina). 3. Analizar el impacto de los procesos tecnológicos a nivel de producción primaria (composición proteica y estado de oxidación) en los indicadores de inflamación (contenido de células somáticas y proteína C Reactiva) y de estado redox (capacidad antioxidante de los productos lácteos y nivel de carbonilos de proteinas). 4. Comparar las características de composición química y el estado de oxidación de leche provenientes de las tres regiones (Buenos Aires, Santa Fe y Córdoba) que conforman la cuenca láctea Argentina. Este objetivo se realizará conjuntamente con los integrantes de nuestro grupo de investigación que trabajan en el Laboratorio de Control de Calidad de la Escuela Superior de Lechería. 5. Determinar los metabolitos secundarios de mieles uniflorales propuestos como responsables de la capacidad antioxidante de estas (polifenoles) y como indicadores de su origen botánico. 6. Valorar la capacidad antioxidante total de mieles uniflorales. 7. Validar los métodos analíticos y semicuantitativos utilizados y a utilizar en el presente proyecto teniendo en cuenta lo efectos de matrices típico de los fluidos biológicos y las mezclas. El estudio de las modificaciones oxidativas de matrices complejas es un tema que es importante tanto desde el punto de vista del conocimiento básico como del aplicado. Nosotros creemos que el presente proyecto aportará conocimiento sobre las características de las vías oxidativas de proteínas en matrices complejas y que podrá ser utilizado para diseñar estrategias productivas tendientes a disminuir el deterioro de la calidad de la leche debido a la exposición a energía radiante. Parte de la experiencia ganada por el grupo ha sido ya volcada a subsanar dificultades y problemas de oxidación y deterioro de la calidad de alimentos. Además, se contribuirá a discernir la paradoja que existe en el área sobre las propiedades oxidantes/antioxidantes de los polifenoles y la relación entre estas y el estado oxidativo de un alimento. The biochemical reactions that occur as a result of food treatment and storage, improve food security, sensory properties and shelf life. Heat treatment, exposure to light and oxygen can cause oxidative damage to lipids and proteins. Oxidative processes in complex matrices display distinctive features that do not appear when the components are individually subjected to oxidation. The hypothesis is that protein oxidation in complex food matrices alters the structure and functional properties of proteins and that the modifications vary according to process conditions and food composition. The main goal is to study oxidation of complex food matrices (milk, honey) with different processes and materials used in the industry. The specific aims are: 1. To study protein oxidation in whole milk and skim subject to various technological processes. The same experiences will be done with serum albumin and isolated whey proteins to compare complex and simple matrices. 2. To determine the relationship between oxidation and milk protein composition, and changes in casein and beta-lactoglobulin. 3. Analyze the impact of technological processes at the level of primary production on markers of inflammation and redox (antioxidant capacity and protein carbonyls). 4. Compare characteristics of chemical composition and oxidation state of milk. 5. Determine secondary metabolites of honey responsible for the antioxidant capacity of these. 6. To evaluate the total antioxidant capacity unifloral honey. This project will provide knowledge about characteristics of oxidative pathways of proteins in complex matrices that can be used to design production strategies aimed at reduce the deterioration of milk quality. Also, it would help to discern the paradox that exists on the oxidants/antioxidants properties of polyphenols and the relationship between these and the oxidative status of a food.
Resumo:
Pollution of water with pesticides has become a threat to the man, material and environment. The pesticides released to the environment reach the water bodies through run off. Industrial wastewater from pesticide manufacturing industries contains pesticides at higher concentration and hence a major source of water pollution. Pesticides create a lot of health and environmental hazards which include diseases like cancer, liver and kidney disorders, reproductive disorders, fatal death, birth defects etc. Conventional wastewater treatment plants based on biological treatment are not efficient to remove these compounds to the desired level. Most of the pesticides are phyto-toxic i.e., they kill the microorganism responsible for the degradation and are recalcitrant in nature. Advanced oxidation process (AOP) is a class of oxidation techniques where hydroxyl radicals are employed for oxidation of pollutants. AOPs have the ability to totally mineralise the organic pollutants to CO2 and water. Different methods are employed for the generation of hydroxyl radicals in AOP systems. Acetamiprid is a neonicotinoid insecticide widely used to control sucking type insects on crops such as leafy vegetables, citrus fruits, pome fruits, grapes, cotton, ornamental flowers. It is now recommended as a substitute for organophosphorous pesticides. Since its use is increasing, its presence is increasingly found in the environment. It has high water solubility and is not easily biodegradable. It has the potential to pollute surface and ground waters. Here, the use of AOPs for the removal of acetamiprid from wastewater has been investigated. Five methods were selected for the study based on literature survey and preliminary experiments conducted. Fenton process, UV treatment, UV/ H2O2 process, photo-Fenton and photocatalysis using TiO2 were selected for study. Undoped TiO2 and TiO2 doped with Cu and Fe were prepared by sol-gel method. Characterisation of the prepared catalysts was done by X-ray diffraction, scanning electron microscope, differential thermal analysis and thermogravimetric analysis. Influence of major operating parameters on the removal of acetamiprid has been investigated. All the experiments were designed using central compoiste design (CCD) of response surface methodology (RSM). Model equations were developed for Fenton, UV/ H2O2, photo-Fenton and photocatalysis for predicting acetamiprid removal and total organic carbon (TOC) removal for different operating conditions. Quality of the models were analysed by statistical methods. Experimental validations were also done to confirm the quality of the models. Optimum conditions obtained by experiment were verified with that obtained using response optimiser. Fenton Process is the simplest and oldest AOP where hydrogen peroxide and iron are employed for the generation of hydroxyl radicals. Influence of H2O2 and Fe2+ on the acetamiprid removal and TOC removal by Fenton process were investigated and it was found that removal increases with increase in H2O2 and Fe2+ concentration. At an initial concentration of 50 mg/L acetamiprid, 200 mg/L H2O2 and 20 mg/L Fe2+ at pH 3 was found to be optimum for acetamiprid removal. For UV treatment effect of pH was studied and it was found that pH has not much effect on the removal rate. Addition of H2O2 to UV process increased the removal rate because of the hydroxyl radical formation due to photolyis of H2O2. An H2O2 concentration of 110 mg/L at pH 6 was found to be optimum for acetamiprid removal. With photo-Fenton drastic reduction in the treatment time was observed with 10 times reduction in the amount of reagents required. H2O2 concentration of 20 mg/L and Fe2+ concentration of 2 mg/L was found to be optimum at pH 3. With TiO2 photocatalysis improvement in the removal rate was noticed compared to UV treatment. Effect of Cu and Fe doping on the photocatalytic activity under UV light was studied and it was observed that Cu doping enhanced the removal rate slightly while Fe doping has decreased the removal rate. Maximum acetamiprid removal was observed for an optimum catalyst loading of 1000 mg/L and Cu concentration of 1 wt%. It was noticed that mineralisation efficiency of the processes is low compared to acetamiprid removal efficiency. This may be due to the presence of stable intermediate compounds formed during degradation Kinetic studies were conducted for all the treatment processes and it was found that all processes follow pseudo-first order kinetics. Kinetic constants were found out from the experimental data for all the processes and half lives were calculated. The rate of reaction was in the order, photo- Fenton>UV/ H2O2>Fenton> TiO2 photocatalysis>UV. Operating cost was calculated for the processes and it was found that photo-Fenton removes the acetamiprid at lowest operating cost in lesser time. A kinetic model was developed for photo-Fenton process using the elementary reaction data and mass balance equations for the species involved in the process. Variation of acetamiprid concentration with time for different H2O2 and Fe2+ concentration at pH 3 can be found out using this model. The model was validated by comparing the simulated concentration profiles with that obtained from experiments. This study established the viability of the selected AOPs for the removal of acetamiprid from wastewater. Of the studied AOPs photo- Fenton gives the highest removal efficiency with lowest operating cost within shortest time.
Resumo:
This communication proposes the use of neural networks in the prediction of residual concentrations of hydrogen peroxide from the treatment of effluents through Advanced Oxidative Processes (AOP's), in particular, the photo-Fenton process. To verify the efficiency of the oxidative process, the Chemical Oxygen Demand (COD) parameter, the values of which may be modified by the presence of oxidizing agents such as residual hydrogen peroxide, is frequently taken in account. The analysis of the H2O2 interference was performed by spectrophotometry at 450 nm wavelength, via the monitoring of the reaction of ammonia with metavanadate. The results of the hydrogen peroxide residual concentration were modeled via a feedforward neural network, with the correlation coefficients between actual and predicted values above 0.96, indicating good prediction capacity.
Resumo:
This work studied the degradation of dipyrone, via electrochemical processes and via electro-Fenton reaction using a 4% CeO2/C gas diffusion electrode (GDE) prepared via modified polymeric precursor method. This material was used to electrochemically generate H2O2 through oxygen reduction. The mean crystallite sizes estimated by the Scherrer equation for 4% CeO2/C were 4 nm for CeO2-x (0 4 4) and 5 nm for CeO2 (1 1 1) while using transmission electron microscopy (TEM) the mean nanoparticle size was 5.4 nm. X-ray photoelectron spectroscopy (XPS) measurements revealed nearly equal concentrations of Ce(III) and Ce(IV) species on carbon, which contained high oxygenated acid species like CO and OCO. Electrochemical degradation using Vulcan XC 72R carbon showed that the dipyrone was not removed during the two hour electrolysis in all applied potentials by electro-degradation. Besides, when the Fenton process was employed the degradation was much similar when using cerium catalysts but the mineralization reaches just to 50% at -1.1 V. However, using the CeO2/C GDE, in 20 min all of the dipyrone was degraded with 26% mineralization at -1.3 V and when the Fenton process was employed, all of the dipyrone was removed after 5 min with 57% mineralization at -1.1 V. Relative to Vulcan XC72R, ceria acts as an oxygen buffer leading to an increase in the local oxygen concentration, facilitating H2O2 formation and consequently improving the dipyrone degradation © 2013 Elsevier B.V. All rights reserved.
Resumo:
Molecular modeling is growing as a research tool in Chemical Engineering studies, as can be seen by a simple research on the latest publications in the field. Molecular investigations retrieve information on properties often accessible only by expensive and time-consuming experimental techniques, such as those involved in the study of radical-based chain reactions. In this work, different quantum chemical techniques were used to study phenol oxidation by hydroxyl radicals in Advanced Oxidation Processes used for wastewater treatment. The results obtained by applying a DFT-based model showed good agreement with experimental values available, as well as qualitative insights into the mechanism of the overall reaction chain. Solvation models were also tried, but were found to be limited for this reaction system within the considered theoretical level without further parameterization.
Resumo:
Molecular modeling is growing as a research tool in Chemical Engineering studies, as can be seen by a simple research on the latest publications in the field. Molecular investigations retrieve information on properties often accessible only by expensive and time-consuming experimental techniques, such as those involved in the study of radical-based chain reactions. In this work, different quantum chemical techniques were used to study phenol oxidation by hydroxyl radicals in Advanced Oxidation Processes used for wastewater treatment. The results obtained by applying a DFT-based model showed good agreement with experimental values available, as well as qualitative insights into the mechanism of the overall reaction chain. Solvation models were also tried, but were found to be limited for this reaction system within the considered theoretical level without further parameterization.
Resumo:
'Golden' papayas at maturity stage 1 (15% yellow skin) were chosen to study selected oxidative processes, the activity of antioxidant enzymes and lipid peroxidation in storage at 22°C, during the ripening of the fruit. An increase in ethylene production was observed on the second day of storage and it was followed by an increase in respiration. An increased activity of catalase, glutathione reductase and ascorbate peroxidase was observed concurrently or soon after this increase in ethylene production and respiration. The increased activity of these enzymes near the peaks of ethylene production and respiration is related to the production of oxidants accompanying the onset of ripening. On the fourth day of storage, there was an increased lipid peroxidation and decreased activities of catalase, glutathione reductase and superoxide dismutase. Lipid peroxidation induces the increase of antioxidant enzymes, which can be verified by further increases in the activities of catalase, glutathione reductase, superoxide dismutase and ascorbate peroxidase. Unlike the other antioxidant enzymes, the ascorbate peroxidase activity in the pulp increased continuously during ripening, suggesting its important role in combating reactive oxygen species during papaya ripening. With regard to physical-chemical characteristics, the soluble solids did not vary significantly, the acidity and ascorbic acid contents increased, and hue angle and firmness decreased during storage. The results revealed that there was variation in the activity of antioxidant enzymes, with peaks of lipid peroxidation during the ripening of 'Golden' papaya. These results provide a basis for future research, especially with regard to the relationships among the climacteric stage, the activation of antioxidant enzymes and the role of ascorbate peroxidase in papaya ripening.
Resumo:
This paper presents the study of photochemical behavior of polycyclic aromatic hydrocarbons (PAHs), potential pollutants in secondary reactions in aerosols, through Raman spectroscopy compared with its electrochemical behavior. The PAHs studied include pyrene, anthracene, phenanthrene and fluorene. These were adsorbed onto TiO2 and irradiated with ultraviolet light (254 nm). Their electrochemical oxidation was studied by in situ Surface-enhanced Raman Scattering (SERS) and led to the formation of carbonyl-containing products. Oxidized intermediates bearing the C=O group were also formed during photodegradation. The joint analysis of the photodegradation data with those produced by electrochemical means - using spectroscopic techniques for the identification and characterization of the products - revealed the formation of identical products for anthracene, but not for pyrene. A reasonable explanation for this difference in results is that photochemical and electrochemical oxidation reactions proceed via different mechanisms. While photocatalytic degradation over TiO2 is initiated by hydroxyl radicals, electrochemical oxidation is initiated by the direct electron transfer from adsorbed PAH to the electrode, generating PAH cation radicals that undergo subsequent reactions.
Resumo:
Currently diverse industries have high pollution potential because their productive processes generate great volumes of refractory effluents. These effluents are problematic, mainly due to the presence of recalcitrant compounds that are detrimental in wastewater treatment plants using biological systems in their processes. In general, biological treatments do not remove refractory elements. Also, in most cases these compounds can inhibit the yield or are toxic for biota responsible to remove the polluting agents. The Advanced Oxidative Processes (AOPs) represent a technological alternative with a great potential for treatment of no biodegradable effluents. In this paper a review of the use of advanced oxidatives processes: Ozone (O(3)), peroxide of hydrogen (H(2)O(2)) and ultraviolet radiation (UV) is presented applied to the treatment of recalcitrant effluents.
Resumo:
Silica gel is widely used as adsorbent for isolating and purifying natural compounds. Intensive use and high cost make this process expensive and generate solid residues contaminated with many different organic compounds. In the present work a simple method for recycling silica was investigated, by using Advanced Oxidative Processes. Silica gel was treated with H2O2/solar light and compared with a sample treated by conventional methods (high temperature and oxidation with KMnO4). High temperature treatment changes the structure of the silica and, consequently, the separation efficiency. Oxidation by using KMnO4 requires multiple steps and produces residues, including manganese and oxalic acid. The method using H2O2/solar light to recuperate silica gel does not modify its separation efficiency and is less expensive than the traditional methods. Additionally, HPLC and GC-MS analysis indicate that H2O2/solar light eliminates all residues of the silica gel.
Resumo:
In this study the efficiency of advanced oxidative processes (AOPs) were investigated toward the degradation of aqueous solutions containing benzene, toluene and xylenes (BTX). The results indicated that BTX can be effectively oxidized by the UV-A-assisted photo-Fenton process. The treatment permits almost total degradation of BTX and removal of more than 80% of the phenolyc intermediates at reaction times of about 30 min. Preliminary investigations using solar light suggest a good potentiality of the process for the treatment of large volumes of aqueous samples containing these polluting species.
Resumo:
Advanced oxidative processes (AOPs) are based on chemical processes that can generate free radicals, such as hydroxyl radicals (.OH) which are strong, non-selective oxidant species that react with the vast majority of organic compounds. Nanostructured semiconductors, especially titanium dioxide (TiO2) in the anatase phase, are well-established photocatalysts for this process, which have proved to be useful in the degradation of dyes, pesticides and other contaminants. Research in different strategies for the synthesis of nanostructured semiconductors, with particular characteristic is currently a topic of interest in many studies. Thus, this paper presents a review about various synthesis strategies of nanostructured photocatalysts.