753 resultados para accretionary wedge


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zusammenfassung:In dieser Studie werden Deformationsprozesse im mesozoischen Torlesse Akkretionskeil (Neuseeland) quantifiziert, um Aufschluß über die Dynamik in Akkretionskeilen zu erhalten. Absolute und relative Verformungsmessungen zeigen sowohl im lokalen als auch regionalen Maßstab eine stark heterogene Deformation des Torlesse Keils. Die regionale Deformation wurde mit Hilfe einer Tensordurchschnittsberechnung, unter Benutzung einzelner lokaler Verformungsdaten, als uniaxiale Verkürzung entlang einer subvertikalen, maximalen Verkürzungsachse charakterisiert. Absolute Verformungsmessungen an niedriggradigen Metasandsteinen belegen darüber hinaus durchschnittliche Volumenverluste von ca. 20% SiO2. Volumenveränderungen in tieferkrustalen Aufschlüssen wurden mittels einer geochemischen Massenbilanzanalyse abgeschätzt. Chemische Zusammensetzungen höhergradiger Zonen weichen je nach Grad der Volumenverformung von der Protolitzusammensetzung ab und zeigen somit Verluste von 15% SiO2 an. Da Speicherorte für das gelöste Material nicht bekannt sind, muss angenommen werden, dass das Material aus dem Keil abtransportiert wurde. Die Verformungsergebnisse geben weiterhin Aufschluß über den Grad der Kopplung zwischen Akkretionskeil und subduzierter Platte. Die ermittelten Scherwerte in den Gesteinen liegen deutlich unter den zu erwartenden Scherwerten, die mittels eines einfachen Modells berechnet wurden, das sowohl verschiedene Konvergenzgeschwindigkeiten als auch Exhumierungsraten berücksichtigt. Dies belegt, dass der Torlesse Keil stark von der subduzierten pazifischen Platte entkoppelt war und die Deformation hauptsächlich durch den Fluß der Sedimente in und aus dem Keil bestimmt wurde.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract In this study structural and finite strain data are used to explore the tectonic evolution and the exhumation history of the Chilean accretionary wedge. The Chilean accretionary wedge is part of a Late Paleozoic subduction complex that developed during subduction of the Pacific plate underneath South America. The wedge is commonly subdivided into a structurally lower Western Series and an upper Eastern Series. This study shows the progressive development of structures and finite strain from the least deformed rocks in the eastern part of the Eastern Series of the accretionary wedge to higher grade schist of the Western Series at the Pacific coast. Furthermore, this study reports finite-strain data to quantify the contribution of vertical ductile shortening to exhumation. Vertical ductile shortening is, together with erosion and normal faulting, a process that can aid the exhumation of high-pressure rocks. In the east, structures are characterized by upright chevron folds of sedimentary layering which are associated with a penetrative axial-plane foliation, S1. As the F1 folds became slightly overturned to the west, S1 was folded about recumbent open F2 folds and an S2 axial-plane foliation developed. Near the contact between the Western and Eastern Series S2 represents a prominent subhorizontal transposition foliation. Towards the structural deepest units in the west the transposition foliation became progressively flat lying. Finite-strain data as obtained by Rf/Phi and PDS analysis in metagreywacke and X-ray texture goniometry in phyllosilicate-rich rocks show a smooth and gradual increase in strain magnitude from east to west. There are no evidences for normal faulting or significant structural breaks across the contact of Eastern and Western Series. The progressive structural and strain evolution between both series can be interpreted to reflect a continuous change in the mode of accretion in the subduction wedge. Before ~320-290 Ma the rocks of the Eastern Series were frontally accreted to the Andean margin. Frontal accretion caused horizontal shortening and upright folds and axial-plane foliations developed. At ~320-290 Ma the mode of accretion changed and the rocks of the Western Series were underplated below the Andean margin. This basal accretion caused a major change in the flow field within the wedge and gave rise to vertical shortening and the development of the penetrative subhorizontal transposition foliation. To estimate the amount that vertical ductile shortening contributed to the exhumation of both units finite strain is measured. The tensor average of absolute finite strain yield Sx=1.24, Sy=0.82 and Sz=0.57 implying an average vertical shortening of ca. 43%, which was compensated by volume loss. The finite strain data of the PDS measurements allow to calculate an average volume loss of 41%. A mass balance approximates that most of the solved material stays in the wedge and is precipitated in quartz veins. The average of relative finite strain is Sx=1.65, Sy=0.89 and Sz=0.59 indicating greater vertical shortening in the structurally deeper units. A simple model which integrates velocity gradients along a vertical flow path with a steady-state wedge is used to estimate the contribution of deformation to ductile thinning of the overburden during exhumation. The results show that vertical ductile shortening contributed 15-20% to exhumation. As no large-scale normal faults have been mapped the remaining 80-85% of exhumation must be due to erosion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite extensive research in the last 150 years, the regional tectonic reconstruction of the Western Alps has remained controversial. The curved orogenic belt consists of several ribbon-like continental terranes (Sesia/Austroalpine, Internal Crystalline Massifs, Brianconnais), which are separated by two or more ophiolitic sutures (Piemonte, Valais, Antrona?, Lanzo/ Canavese?). High-pressure (HP) metamorphism of each terrane occurred during distinct orogenic episodes: at similar to65 Ma in the Sesia/Austroalpine, at similar to45 Ma in the Piemonte zone and at similar to35 Ma in the Internal Crystalline Massifs. It is suggested that these events reflect individual accretionary episodes, which together with kinematic indicators and the speed and direction of plate motions, provide constraints for the discussed reconstruction model. The model involves a prolonged orogenic history that took place during relative convergence of Europe and Adria (here considered as a promontory of the African plate). The first accretionary event involved the Sesia/Austroalpine terrane. Final closure of the Piemonte Ocean occurred during the Eocene (similar to45 Ma) and involved ultra-high-pressure (UHP) metamorphism of the Piemonte oceanic crust. Incorporation of the Brianconnais terrane in the accretionary wedge occurred thereafter, possibly during or after subduction of the Valais Ocean in the late Eocene (45-35 Ma). This subduction was terminated at ca. 35 Ma, when the Internal Crystalline Massifs (i.e. the assumed internal parts of the Brianconnais terrane) were buried into great depths and underwent HP and UHP metamorphism. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wistari Reef. within the southern Great Barrier Reef. is a shallow coral reef platform featuring a very clearly defined leeward accretionary wedge of carbonate sediments. The total global area of shallowly submerged coral reef has been quantified as 255 000 km(2). The question then becomes: What additional area of sediment of significant thickness is associated with the measured shallow reef areas T At Wistari Reef, the leeward sedimentary wedge has an area and a thickness that are roughly equal to the Holocene sediments that have accumulated on the platform. Several important observations can be made from these data. Firstly. the area of significant neritic carbonate sedimentation ( > 1 m/ka) associated with coral reefs is near 500000 km(2). Secondly, the production rate of neritic carbonates at Wistari Reef is almost 50%, less than the accumulation rate needed to obtain the volume of Holocene reef sediments observed. This implies that both production and accumulation neritic carbonate must have been more than a factor of two higher in the early to mid Holocene. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stratigraphic and petrographic analysis of the Cretaceous to Eocene Tibetan sedimentary succession has allowed us to reinterpret in detail the sequence of events which led to closure of Neotethys and continental collision in the NW Himalaya. During the Early Cretaceous, the Indian passive margin recorded basaltic magmatic activity. Albian volcanic arenites, probably related to a major extensional tectonic event, are unconformably overlain by an Upper Cretaceous to Paleocene carbonate sequence, with a major quartzarenite episode triggered by the global eustatic sea-level fall at the Cretaceous/Tertiary boundary. At the same time, Neotethyan oceanic crust was being subducted beneath Asia, as testified by calc-alkalic volcanism and forearc basin sedimentation in the Transhimalayan belt. Onset of collision and obduction of the Asian accretionary wedge onto the Indian continental rise was recorded by shoaling of the outer shelf at the Paleocene/Eocene boundary, related to flexural uplift of the passive margin. A few My later, foreland basin volcanic arenites derived from the uplifted Asian subduction complex onlapped onto the Indian continental terrace. All along the Himalaya, marine facies were rapidly replaced by continental redbeds in collisional basins on both sides of the ophiolitic suture. Next, foreland basin sedimentation was interrupted by fold-thrust deformation and final ophiolite emplacement. The observed sequence of events compares favourably with theoretical models of rifted margin to overthrust belt transition and shows that initial phases of continental collision and obduction were completed within 10 to 15 My, with formation of a proto-Himalayan chain by the end of the middle Eocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Résumé Le « terrane » d'Anarak-Jandak occupe une position géologique clé au nord-ouest du Microcontinent Centre-East Iranien (CE1M), connecté avec le Bloc du Grand Kavir et la ceinture métamorphique de Sanandaj-Sirjan. Nous discutons ici l'origine de ces différentes unités, reliées jusqu'à présent à des épisodes orogéniques d'âge Précambrien à Paléozoïque inférieur, pour conclure finalement de leur affinité paléotéthysienne. Leur histoire commence par un épisode de rifting d'âge Ordovicien supérieur-Dévonien inférieur, pour se terminer au Trias par la collision des blocs Cimmériens dérivé du Gondwana avec le Bloc du Turan d'affinité asiatique (événement Eocimmérien). La plus importante unité métamorphique affleurant au sud-ouest de la région de Jandak-Anarak-Kaboudan est une épaisse séquence silicoclastique à grains fins contenant des blocs ophiolitiques (marginal-sea-type), et des associations basalte-gabbro à signatures géochimiques de type supra-subduction. Dans la région de Nakhlak, nous avons daté ces gabbros par la méthode U-Pb à 387f0.11 Ma ; les roches métamorphiques pélitiques ont donné des âges de refroidissement Ar-Ar pour la muscovite de 320 à 333 Ma. Ce complexe d'accrétion "varisque" a été métamorphisé dans le faciès schiste vert-amphibolite au cours de l'accrétion de la ceinture granitique d'Airekan, d'âge Cambrien inférieur (549±15 Ma par la méthode U/Pb), qui affleure aujourd'hui à l'extrémité nord-ouest du terrane d'Anarak-Jandak . La subduction vers le nord de l'océan Paléotéthys depuis le Paléazoïque supérieur jusqu'au Trias, a permis l'accumulation de grandes quantités de matériel océanique dans la zone de subduction. Par exemple, une succession de guyots (Anarak, Kaboudan, et Meraji Seamounts) et de hauts sous-marins, entrés en collision oblique avec le prisme d'accrétion, est à l'origine d'un léger métamorphisme de type HP qui affecte ces séries {âges Ar-Ar de 280 à 230 Ma). De plus, le magmatisme bimodal de Chah Gorbeh est caractérisé d'une part par des roches de type trondjémite-gabbros (262 Ma), d'autre part par des laves en coussin de type basaltes alcalins-rhyolites; ces roches magmatiques ont recoupé l'ophiolite d'Anarak lors de la mise en place de cette dernière dans la fosse interne de subduction. Quant au prisme d'accrétion de Doshakh, d'âge essentiellement Permien supérieur, i1 a été accrété le long de la marge continentale et métamorphisé dans le faciès schiste vert. La fermeture de la Paléotéthys s'enregistre finalement par la sédimentation dans le bassin d'avant pays du flysch de Bayazeh, d'âge probable Triasique. Le matériel issu de l'arc magmatique de la Paléotéthys est très bien préservé dans les dépôts infra-arc Dévonien supérieur-Carbonifère de Godar-e-Siah, ainsi que dans la succession d'avant-arc de Nakhlak. Pendant l'intervalle Paléozoïque supérieur-Trias, la région de Jandak a été soumise à un régime extensif de type bassin d'arrière-arc, dont un témoin pourrait être la ceinture ophiolitique d'Arusan, elle-même comparable aux écailles ophiolitiques d'Aghdarband au nord-est de l'Iran. Cet ensemble métamorphique est recoupé par des granites d'arc à collisionnel datés à 215±15 Ma. Dans la région de Yazd, témoin de la marge passive Cimmérienne, la sédimentation syn-rift Silurienne à Dévonienne inférieure a été interrompue pendant l'intervalle Trias moyen-Trias supérieur; il en a été de même pour les dépôts de plate-forme Paléozoïque supérieur. L'érosion, qui dans ce dernier cas a atteint le Permien, pourrait être liée au bombement flexural de la marge passive. La collision finale n'a pas induit de déformations trop importantes, et se caractérise par la mise en place de nappes sur la marge passive. Cet événement est scellé par des dépôts molassique du Lias. D'un point de vue régional, la zone s'étendant actuellement de la Mer Noire au Pamir a été soumise à six épisodes d'extension-compression du Jurassique inférieur (début du l'ouverture en position arrière-arc de la Néotéthys) à l'Eocène moyen. Par exemple, le terrane d'AnarakJandak, probablement situé entre le Kopeh Dagh et la plate-forme nord Afghane, s'est complètement détaché de sa patrie d'origine au début du Crétacé supérieur. Des preuves de cet événement se retrouvent dans les séries de plate-forme de Khur (préservation de séries syn-rift puis de marge passive). Les ophiolites de Nain et de Sabzevar sont de plus interprétée comme un témoin de l'existence de ce bassin d'arrière-arc. Dans l'intervalle Eocène-Oligocène, l'indentation par la plaque indienne de l'Eurasie a été contemporaine de la rotation horaire de fragments de l'ancien microcontinent Iranien et de la formation du CEIM. Cette rotation est responsable du transport du terrane d'Anarak-Jandak vers sa position actuelle en Iran Central, et de la dislocation de Terranes de moindre importance, comme le bloc de Posht-e Badam. Depuis le Miocène supérieur, et à la suite de la collision entre l'Arabie et l'Iran, le ternane d'Anarak-Jandak a subi des déformations liées à l'activité d'une zone de cisaillement dextre parallèle à la suture du Zagros, à l'arrière de l'arc magmatique d'Uromieh-Dokhtar. Résumé large public Le Microcontinent Centre-Est Iranien occupe une position géologique clé au centre de l'Iran. Les différentes unités qui le composent, reliées jusqu'à présent à des épisodes orogéniques d'âge Précambrien à Paléozoïque inférieur, sont maintenant rajeunies et liés à la fermeture de l'océean Paléotéthys. Leur histoire commence par un épisode de rifting d'âge Ordovicien supérieur à Dévonien inférieur, pour se terminer au Trias par la collision des- blocs Cimmériens, dérivés du Gondwana, avec le Bloc du Turan d'affinité asiatique. Dans la marge active asiatique de la Paléotéthys, nous avons daté les restes d'un océan marginal à 387±0.11 Ma. Ce complexe d'accrétion a été métamorphisé au cours de la réaccrétion de la ceinture granitique d'Airekan, d'âge Cambrien inférieur (549±15 Ma), qui affleure aujourd'hui à l'extrémité nord-ouest du « terrane » d'Anarak-Jandak correspondant à la plus grande partie de la région étudiée. Le matériel issu de l'arc magmatique de la Paléotéthys est très bien préservé et daté du Dévonien supérieur-Carbonifère. Pendant l'intervalle Paléozoïque supérieur-Trias, la région a été soumise à un régime extensif de type bassin d'arrière-arc, dont un témoin pourrait être la ceinture ophiolitique d'Arusan, comparable aux écailles ophiolitiques d'Aghdarband au nord-est de l'Iran. Cet ensemble métamorphique est recoupé par des granites datés à 215±15 Ma. La subduction vers le nord de l'océan Paléotéthys depuis le Paléozoïque supérieur jusqu'au Trias, a permis l'accumulation de grandes quantités de matériel océanique dans la zone de subduction. Par exemple, une succession de volcans sous-marins, entrés en collision avec le prisme d'accrétion, est à l'origine d'un léger métamorphisme de type HP qui affecte ces séries (280 à 230 Ma). Quant au prisme d'accrétion de Doshakh, d'âge essentiellement Permien supérieur, il a été mis en place le long de la marge continentale et métamorphisé dans le faciès schiste vert. La fermeture de la Paléotéthys s'enregistre finalement par la sédimentation dans le bassin d'avant pays du flysch de Bayazeh, d'âge Triasique. Dans la région de Yazd, on trouve les témoins de la marge passive Cimmérienne, la sédimentation syn-rift Silurienne à Dévonienne inférieure a été interrompue pendant l'intervalle Trias moyen-Trias supérieur, marqué par la flexuration de la marge passive lorsqu'elle rentra en collision avec la marge active asiatique. Cet événement est scellé par des dépôts molassique à charbon du Lias. Le «terrane» d'Anarak-Jandak, probablement situé à l'origine entre le Kopeh Dagh et la plate-forme nord Afghane, s'est complètement détaché de cette région au début du Crétacé supérieur lors de l'ouverture d'un bassin d'arrière-arc, engendré, cette fois, par la subduction de l'océan Néotéthys situé au sud des blocs cimmériens. Des preuves de cet événement se retrouvent dans les séries syn-rift, puis de marge passive de Khour. Les ophiolites de Nain et de Sabzevar sont interprétées comme un témoin de l'existence de ce bassin d'arrière-arc. Dans l'intervalle Eocène-Oligocène, l'indentation de l'Eurasie par la plaque indienne a été contemporaine de la rotation horaire de fragments de l'ancien microcontinent centre-Iranien. Cette rotation de près de 90° est responsable du transport du « terrane » d'Anarak-Jandak vers sa position actuelle. Abstract The Anarak-Jandaq terrane occupies a strategic geological situation at the north-western part of the Central-East Iranian Microcontinent (CEIM) and in connection with the Great Kavir Block and Sanandaj-Sirjan metamorphic belt. Our recent findings redefine the origin of these mentioned areas so far attributed to the Precambrian-Early Palaeozoic orogenic episodes, to be now directly related to the tectonic evolution of the Palaeo-Tethys Ocean, commenced by Late Ordovician-Early Devonian rifting events and terminated in the Triassic by the Eocimmerian tectonic event due to the collision of the Cimmerian blocks with the Asiatic Turan block. The most distributed metamorphic unit that is exposed from the south-west of Jandaq to the Anarak and Kaboudan areas is a thick and fine grain siliciclastic sequence accompanied by marginal-sea-basin ophiolitic blocks including basalt-gabbro association with supra-subduction-geochemical signature. These gabbros in the Nakhlak area were dated by U/Pb method at 387.6 ± 0.11 Ma and the metamorphic pelitic rocks yielded a range of 320 to 333 Ma muscovite-cooling ages based on 40Ar/39 Ar method. This "Variscan" accretionary complex was metamorphosed in greenschist-amphibolite facies during accretion to the Lower Cambrian Airekan granitic belt (549 ± 15 Ma by U/Pb method) that crops out at the northwestern edge of the Anarak-Jandaq terrane. Continued northward subduction of the Palaeo-Tethys Ocean during the entire Late Palaeozoic-Middle Triassic brought huge amount of oceanic material to the subduction zone. One chain of Carboniferous-Triassic oceanic rises and seamounts (the Anarak, Kaboudan, and Meraji Seamounts) obliquely collided with the accretionary wedge and created a mild HP metamorphic event (280-230 Ma based on 40Ar/39Ar results). Bimodal magmatism of the Chah Gorbeh area is characterized by a 262 Ma trondjemite-gabbro as well as pillow alkalibasalts-rhyolites which intruded the Anarak ophiolite when it was being emplaced within the inner-wall trench. The mainly Late Permian-Triassic Doshakh wedge was accreted along the continent and metamorphosed under lower greenschist facies and the probable Triassic Bayazeh flysch filled the foreland basin during the final closure. The Palaeo-Tethys magmatic arc products have been well preserved in the Late Devonian-Carboniferous Godar-e-Siah intra-arc deposits and the Triassic Nakhlak fore-arc succession. During the Late Palaeozoic-Triassic times, the Jandaq area has been affected by back-arc extension and probably the Arusan ophiolitic belt is the remnant of this narrow basin comparable to the Aqdarband ophiolitic remnant in north-east Iran. This metamorphic belt was intruded by 215 ± 15 Ma arc to collisional granites. In the passive margin of the Cimmerian block, on the Yazd region, the Silurian-Early Devonian syn-rift succession as well as the nearly continuous Upper Palaeozoic platform-type deposition was interrupted during the Middle to Late Triassic time, local erosion down to Devonian levels may be related to flexural bulge erosion. The collision event was not so strong to generate intensive deformation but was accompanied by some nappe thrusting onto the passive margin. It is finally unconformably covered by Liassic continental molassic deposits. Related to the onset of Neo-Tethyan back-arc opening in Early Jurassic to Mid-Eocene times, six periods of extensional-compressional events have differently influenced an elongated area, extending from the West Black Sea to Pamir. The Anarak-Jandaq terrane which was situated somewhere in this affected area, probably between the Kopeh Dagh and North Afghan platform, was completely detached from its source at the beginning of the Late Cretaceous

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A continental subduction-related and multistage exhumation process for the Tso Morari ultra-high pressure nappe is proposed. The model is constrained by published thermo-barometry and age data, combined with new geological and tectonic maps. Additionally, observations on the structural and metamorphic evolution of the Tso Morari area and the North Himalayan nappes are presented. The northern margin of the Indian continental crust was subducted to a depth of >90 km below Asia after continental collision some 55 Ma ago. The underthrusting was accompanied by the detachment and accretion of Late Proterozoic to Early Eocene sediments, creating the North Himalayan accretionary wedge, in front of the active Asian margin and the 103-50 Ma Ladakh arc batholith. The basic dikes in the Ordovician Tso Morari granite were transformed to eclogites with crystallization of coesite, some 53 Ma ago at a depth of >90 kin (>27 kbar) and temperatures of 500 to 600 degrees C. The detachment and extrusion of the low density Tso Morari nappe, composed of 70% of the Tso Morari granite and 30% of graywackes with some eclogitic dikes, occurred by ductile pure and simple shear deformation. It was pushed by buoyancy forces and by squeezing between the underthrusted Indian lithosphere and the Asian mantle wedge. The extruding Tso Morari nappe reached a depth of 35 km at the base of the North Himalayan accretionary wedge some 48 Ma ago. There the whole nappe stack recrystallized under amphibolite facies conditions of a Barrovian regional metamorphism with a metamorphic field gradient of 20 degrees C/km. An intense schistosity with a W-E oriented stretching lineation L, and top-to-the E shear criteria and crystallization of oriented sillimanite needles after kyanite, testify to the Tso Morari nappe extrusion and pressure drop. The whole nappe stack, comprising from the base to top the Tso Morari, Tetraogal, Karzok and Mata-Nyimaling-Tsarap nappes, was overprinted by new schistosities with a first N-directed and a second NE-directed stretching lineation L-2 and L-3 reaching the base of the North Himalayan accretionary wedge. They are characterized by top-to-the S and SW shear criteria. This structural overprint was related to an early N- and a younger NE-directed underthrusting of the Indian plate below Asia that was accompanied by anticlockwise rotation of India. The warping of the Tso Morari dome started already some 48 Ma ago with the formation of an extruding nappe at depth. The Tso Morari dome reached a depth of 15 km about 40 Ma ago in the eastern Kiagar La region and 30 Ma ago in the western Nuruchan region. The extrusion rate was of about 3 cm/yr between 53 and 48 Ma, followed by an uplift rate of 1.2 mm/yr between 48 and 30 Ma and of only 0.5 mm/yr after 30 Ma. Geomorphology observations show that the Tso Morari dome is still affected by faults, open regional dome, and basin and pull-apart structures, in a zone of active dextral transpression parallel to the Indus Suture zone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This review paper deals with the geology of the NW Indian Himalaya situated in the states of Jammu and Kashmir, Himachal Pradesh and Garhwal. The models and mechanisms discussed, concerning the tectonic and metamorphic history of the Himalayan range, are based on a new compilation of a geological map and cross sections, as well as on paleomagnetic, stratigraphic, petrologic, structural, metamorphic, thermobarometric and radiometric data. The protolith of the Himalayan range, the North Indian flexural passive margin of the Neo-Tethys ocean, consists of a Lower Proterozoic basement, intruded by 1.8-1.9 Ga bimodal magmatites, overlain by a horizontally stratified sequence of Upper Proterozoic to Paleocene sediments, intruded by 470-500 Ma old Ordovician mainly peraluminous s-type granites, Carboniferous tholeiitic to alkaline basalts and intruded and overlain by Permian tholeiitic continental flood basalts. No elements of the Archaen crystalline basement of the South Indian shield have been identified in the Himalayan range. Deformation of the Himalayan accretionary wedge resulted from the continental collision of India and Asia beginning some 65-55 Ma ago, after the NE-directed underthrusting of the Neo-Tethys oceanic crust below Asia and the formation of the Andean-type 103-50 (-41) Ma old Ladakh batholith to the north of the Indus Suture. Cylindrical in geometry, the Himalayan range consists, from NE to SW, from older to younger tectonic elements, of the following zones: 1) The 25 km wide Ladakh batholith and the Asian mantle wedge form the backstop of the growing Himalayan accretionary wedge. 2) The Indus Suture zone is composed of obducted slices of the oceanic crust, island arcs, like the Dras arc, overlain by Late Cretaceous fore arc basin sediments and the mainly Paleocene to Early Eocene and Miocene epi-sutural intra-continental Indus molasse. 3) The Late Paleocene to Eocene North Himalayan nappe stack, up to 40 km thick prior to erosion, consists of Upper Proterozoic to Paleocene rocks, with the eclogitic and coesite bearing Tso Morari gneiss nappe at its base. It includes a branch of the Central Himalayan detachment, the 22-18 Ma old Zanskar Shear zone that is intruded and dated by the 22 Ma Gumburanjun leucogranite; it reactivates the frontal thrusts of the SW-verging North Himalayan nappes. 4) The late Eocene-Miocene SW-directed High Himalayan or ``Crystalline'' nappe comprises Upper Proterozoic to Mesozoic sediments and Ordovician granites, identical to those of the North Himalayan nappes. The Main Central thrust at its base was created in a zone of Eocene to Early Oligocene anatexis by ductile detachment of the subducted Indian crust, below the pre-existing 25-35 km thick NE-directed Shikar Beh and SW-directed North Himalayan nappe stacks. 5) The late Miocene Lesser Himalayan thrust with the Main Boundary Thrust at its base consists of early Proterozoic to Cambrian rocks intruded by 1.8-1.9 Ga bimodal magmatites. The Subhimalaya is a thrust wedge of Himalayan fore deep basin sediments, composed of the Early Eocene marine Subathu marls and sandstones as well as the up to 8'000 m-thick Miocene to recent Ganga molasse, a coarsening upwards sequence of shales, sandstones and conglomerates. The active frontal thrust is covered by the sediments of the Indus-Ganga plains.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New structural data from Elephant Island and adjacent islands are presented with the objective to improve the understanding of subduction kinematics in the area northeast of the Antarctic Peninsula. on the island, a first deformation phase, D-1, produced a strong SL fabric with steep stretching and mineral lineations, partly defined by relatively high pressure minerals, such as crossite and glaucophane. D-1 is interpreted to record southward subduction along an E-W trench with respect to the present position of the island. A second phase, D-2, led to intense folding with steep E-W-trending axial surfaces. The local presence of sinistral C'-type sheer bands related to this phase and the oblique inclination of the L-2 stretching lineations are the main arguments to interpret this phase as representing oblique sinistral transpressive shear along steep, approximately E-W-trending shear zones, with the northern (Pacific) block going down with respect to the southern (Antarctic Peninsula) block. The sinistral strike-slip component may represent a trench-linked strike-slip movement as a consequence of oblique subduction. Lithostatic pressure decreased and temperature increased to peak values during D-2, interpreted to represent the collision of thickened oceanic crust with the active continental margin. The last deformation phase, D-3, is characterised by post-metamorphic kink bands, partially forming conjugate sets consistent with E-W shortening and N-S extension. The rock units that underlie the island probably rotated during D-3, in Cenozoic times, together with the trench, from an NE-SW to the present ENE-WSW position, during the progressive opening of the Scotia Sea. The similarity between the strain orientation of D-3 and that of the sinistral NE-SW Shackleton Fracture Zone is consistent with this interpretation. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A subduction complex composed of ocean floor material mixed with arc-derived metasediments crops out in the Elephant Island group and at Smith Island, South Shetland Islands, Antarctica, with metamorphic ages of 120-80 Ma and 58-47 Ma? respectively. Seven metamorphic zones (I-VII) mapped on Elephant Island delineate a gradual increase in metamorphic grade from the pumpellyite-actinolite facies, through the crossite-epidote blueschist facies, to the lower amphibolite facies. Geothermometry in garnet-amphibole and garnet-biotite pairs yields temperatures of about 350 degrees C in zone III to about 525 degrees C in zone VII. Pressures were estimated on the basis of Si content in white mica, Al2O3 content in alkali amphibole, Na-M4/Al-IV in sodic-calcic and calcic amphibole, Al-VI/Si in calcic amphibole, and jadeite content in clinopyroxene. Mean values vary from about 6-7.5 kbar in zone II to about 5 kbar in zone VII. Results from the other islands of the Elephant Island group are comparable to those from the main island; Smith Island yielded slightly higher pressures, up to 8 kbar, with temperatures estimated between 300 and 350 degrees C. Zoned minerals and other textural indications locally enable inference of P-T-t trajectories, all with a clockwise evolution. A reconstruction in space and time of these P-T-t paths allows an estimate of the thermal structure in the upper crust during the two ductile deformation phases (D-1 & D-2) that affected the area. This thermal structure is in good agreement with the one expected for a subduction zone. The arrival and collision of thickened oceanic crust may have caused the accretion and preservation of the subduction complex. In this model, D-1 represents the subduction movements expressed by the first vector of the clockwise P-T-t path, D-2 reflects the collision corresponding to the second vector with increasing temperature and decreasing pressure, and D-3 corresponds to isostatic uplift accompanied by erosion, under circumstances of decreasing temperature and pressure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Eastern Blue Ridge Province of the southern Appalachians contains, in part, remnants of an Ordovician accretionary wedge complex formed during subduction of an oceanic tract before mid-Ordovician accretion with Laurentia. The Eastern Blue Ridge Province consists of metapelite and amphibolite intruded by low-K plutons, high-temperature (T > 750 degrees C) Ordovician eclogite, and other high-pressure metamafic and meta-ultramatic rocks. Felsic plutons in the Eastern Blue Ridge Province are important time markers for regional-scale tectonics, deformation, and metamorphism. Plutons were thought to be related to either Taconian (Ordovician) or Acadian (Devonian-Silurian) tectonothermal events.We dated five plutonic or metaplutonic rocks to constrain pluton crystallization ages better and thus the timing of tectonism. The Persimmon Creek gneiss yielded a protolith crystallization age of 455.7 +/- 2.1 Ma, Chalk Mountain 377.7 +/- 2.5 Ma, Mt. Airy 334 +/- 3 Ma, Stone Mountain 335.6 +/- 1.0 Ma, and Rabun 335.1 +/- 2.8 Ma. The latter four plutons were thought to be part of the Acadian Spruce Pine Suite, but instead our new ages indicate that Alleghanian (Carboniferous-Permian) plutonism is widespread and voluminous in the Eastern Blue Ridge Province. The Chattahoochee fault, which was considered an Acadian structure, cuts the Rabun pluton and thus must have been active during the Alleghanian orogeny. The new ages indicate that Persimmon Creek crystallized less than 3 m.y. after zircon crystallization in Eastern Blue Ridge eclogite and is nearly synchronous with nearby high-grade metamorphism and migmatization. The three phases of plutonism in the Eastern Blue Ridge Province correspond with established metamorphic ages for each of the three major orogenic pulses along the western flank of the southern Appalachians.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The South Orkney Islands are the exposed part of a continental fragment on the southern limb of the Scotia are. The islands are to a large extent composed of metapelites and metagreywackes of probable Triassic sedimentary age. Deformation related to an accretionary wedge setting, with associated metamorphism from anchizone to the greenschist facies, are of Jurassic age (176-200 Ma). on Powell Island, in the centre of the archipelago, five phases of deformation are recognized. The first three, associated with the main metamorphism, are tentatively correlated with early Jurassic subduction along the Pacific margin of Gondwana. D-4 is a phase of middle to late Jurassic crustal extension associated with uplift. This extension phase may be related to opening of the Rocas Verdes basin in southern Chile, associated with the breakup of Gondwanaland. Upper Jurassic conglomerates cover the metamorphic rocks unconformably. D-5 is a phase of brittle extensional faulting probably associated with Cenozoic opening of the Powell basin west of the archipelago, and with development of the Scotia are.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Eastern Blue Ridge Province of the southern Appalachians contains, in part, remnants of an Ordovician accretionary wedge complex formed during subduction of an oceanic tract before mid-Ordovician accretion with Laurentia. The Eastern Blue Ridge Province consists of metapelite and amphibolite intruded by low-K plutons, high-temperature (T >750 °C) Ordovician eclogite, and other high-pressure metamafic and meta-ultramafic rocks. Felsic plutons in the Eastern Blue Ridge Province are important time markers for regional-scale tectonics, deformation, and metamorphism. Plutons were thought to be related to either Taconian (Ordovician) or Acadian (Devonian-Silurian) tectonothermal events. We dated five plutonic or metaplutonic rocks to constrain pluton crystallization ages better and thus the timing of tectonism. The Persimmon Creek gneiss yielded a protolith crystallization age of 455.7 ± 2.1 Ma, Chalk Mountain 377.7 ± 2.5 Ma, Mt. Airy 334 ± 3Ma, Stone Mountain 335.6 ± 1.0 Ma, and Rabun 335.1 ± 2.8 Ma. The latter four plutons were thought to be part of the Acadian Spruce Pine Suite, but instead our new ages indicate that Alleghanian (Carboniferous-Permian) plutonism is widespread and voluminous in the Eastern Blue Ridge Province. The Chattahoochee fault, which was considered an Acadian structure, cuts the Rabun pluton and thus must have been active during the Alleghanian orogeny. The new ages indicate that Persimmon Creek crystallized less than 3 m.y. after zircon crystallization in Eastern Blue Ridge eclogite and is nearly synchronous with nearby high-grade metamorphism and migmatization. The three phases of plutonism in the Eastern Blue Ridge Province correspond with established metamorphic ages for each of the three major orogenic pulses along the western flank of the southern Appalachians. © 2006 Geological Society of America.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An integrated array of analytical methods -including clay mineralogy, vitrinite reflectance, Raman spectroscopy on carbonaceous material, and apatite fission-track analysis- was employed to constrain the thermal and thermochronological evolution of selected portions of the Pontides of northern Turkey. (1) A multimethod investigation was applied for the first time to characterise the thermal history of the Karakaya Complex, a Permo-Triassic subduction-accretion complex cropping out throughout the Sakarya Zone. The results indicate two different thermal regimes: the Lower Karakaya Complex (Nilüfer Unit) -mostly made of metabasite and marble- suffered peak temperatures of 300-500°C (greenschist facies); the Upper Karakaya Complex (Hodul and the Orhanlar Units) –mostly made of greywacke and arkose- yielded heterogeneous peak temperatures (125-376°C), possibly the result of different degree of involvement of the units in the complex dynamic processes of the accretionary wedge. Contrary to common belief, the results of this study indicate that the entire Karakaya Complex suffered metamorphic conditions. Moreover, a good degree of correlation among the results of these methods demonstrate that Raman spectroscopy on carbonaceous material can be applied successfully to temperature ranges of 200-330°C, thus extending the application of this method from higher grade metamorphic contexts to lower grade metamorphic conditions. (2) Apatite fission-track analysis was applied to the Sakarya and the İstanbul Zones in order to constrain the exhumation history and timing of amalgamation of these two exotic terranes. AFT ages from the İstanbul and Sakarya terranes recorded three distinct episodes of exhumation related to the complex tectonic evolution of the Pontides. (i) Paleocene - early Eocene ages (62.3-50.3 Ma) reflect the closure of the İzmir-Ankara ocean and the ensuing collision between the Sakarya terrane and the Anatolide-Tauride Block. (ii) Late Eocene - earliest Oligocene (43.5-32.3 Ma) ages reflect renewed tectonic activity along the İzmir-Ankara. (iii) Late Oligocene- Early Miocene ages reflect the onset and development of the northern Aegean extension. The consistency of AFT ages, both north and south of the tectonic contact between the İstanbul and Sakarya terranes, suggest that such terranes were amalgamated in pre-Cenozoic times. (3) Fission-track analysis was also applied to rock samples from the Marmara region, in an attempt to constrain the inception and development of the North Anatolian Fault system in the region. The results agree with those from the central Pontides. The youngest AFT ages (Late Oligocene - early Miocene) were recorded in the western portion of the Marmara Sea region and reflect the onset and development of northern Aegean extension. Fission-track data from the eastern Marmara Sea region indicate rapid Early Eocene exhumation induced by the development of the İzmir-Ankara orogenic wedge. Thermochronological data along the trace of the Ganos Fault –a segment of the North Anatolian Fault system- indicate the presence of a tectonic discontinuity active by Late Oligocene time, i.e. well before the arrival of the North Anatolian Fault system in the area. The integration of thermochronologic data with preexisting structural data point to the existence of a system of major E-W-trending structural discontinuities active at least from the Late Oligocene. In the Early Pliocene, inception of the present-day North Anatolian Fault system in the Marmara region occurred by reactivation of these older tectonic structures. 


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Serpentine minerals in natural samples are dominated by lizardite and antigorite. In spite of numerous laboratory experiments, the stability fields of these species remain poorly constrained. This paper presents petrological observations and the Raman spectroscopy and XRD analyses of natural serpentinites from the Alpine paleo-accretionary wedge. Serpentine varieties were identified from a range of metamorphic pressure and temperature conditions from sub-greenschist (P < 4 kbar, T ~ 200–300 °C) to eclogite facies conditions (P > 20 kbar, T > 460 °C) along a subduction geothermal gradient. We use the observed mineral assemblage in natural serpentinite along with the Tmax estimated by Raman spectroscopy of the carbonaceous matter in associated metasediments to constrain the temperature of the lizardite to antigorite transition at high pressures. We show that below 300 °C, lizardite and locally chrysotile are the dominant species in the mesh texture. Between 320 and 390 °C, lizardite is progressively replaced by antigorite at the grain boundaries through dissolution–precipitation processes in the presence of SiO2 enriched fluids and in the cores of the lizardite mesh. Above 390 °C, under high-grade blueschist to eclogite facies conditions, antigorite is the sole stable serpentine mineral until the onset of secondary olivine crystallization at 460 °C.