932 resultados para aberrant methylation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lung cancer is a major chronic disease responsible for the highest mortality rate, among other types of cancer, and represents 29% of all deaths in Canada. The clinical diagnosis of lung carcinoma still requires a standard diagnostic approach, as there are no symptoms in its early stage. Therefore, it is usually diagnosed at a later stage, when the survival rate is low. With the recent advancement in molecular biology and biotechnology, a molecular biomarker approach for the diagnosis of early lung cancer seems to be a potential option. In this study, we aimed to investigate and standardize a promising Lung ,Cancer Biomarker by studying the aberrant methylation of two tumour suppressor genes, namely RASSFIA and RAR-B, and the miRNA profiling of four . commonly deregulated miRNA (miR-199a-3p, miR-182, miR-lOO and miR-221). Four lung cancer cell lines were used (two SCLC and two NSCLC), with comparisons being made with normal lung cell lines. Our results, we found that none of these genes were methylated. We then evaluated TP53, and found the promoter of this gene to be methylated in the cancer cell lines, as compared to the normal cell lines, indicating gene inactivation. We carried out miRNA profiling of the cancer cell lines and reported that 80 miRNAs are deregulated in lung cancer cell lines as compared to the normal cell lines. Our study was the first of its kind to indicate that hsa-mir-4301, hsa-mir-4707-5p and hsa-mir-4497 (newly discovered miRNAs) are deregulated in lung cancer cell lines. We also investigated miR-199a-3p, mir-lOO and miR-182, and found that miR-199a -3p and mir-l00 were down-regulated in cancer lines, whereas miR-182 was up-regulated in the cancer cell lines. In the final part of the study we observed that mir-221 could be a putative biomarker to distinguish between the two types of lung cancer because it was down-regulated in SCLC, and up-regulated in the NSCLC cell lines. In conclusion, we found four miRNA molecular biomarkers that possibly could be used in the early diagnosis of the lung cancer. More studies are still required with larger numbers of samples to effectively establish these as molecular biomarkers for the diagnosis of lung cancer

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The p53 tumor suppressor gene is the most frequently mutated gene in human cancer; this gene is mutated in up to 50% of human tumors. It has a critical role in the cell cycle, apoptosis and cell senescence, and it participates in many crucial physiological and pathological processes. Polymorphisms of p53 have been suggested to be associated with genetically determined susceptibility in various types of cancer. Another process involved with the development and progression of tumors is DNA hypermethylation. Aberrant methylation of the promoter is an alternative epigenetic change in genetic mechanisms, leading to tumor suppressor gene inactivation. In the present study, we examined the TP53 Arg72Pro and Pro47Ser polymorphisms using PCR-RFLP and the pattern of methylation of the p53 gene by methylation-specific PCR in 90 extra-axial brain tumor samples. Patients who had the allele Pro of the TP53 Arg72Pro polymorphism had an increased risk of tumor development ( odds ratio, OR = 3.23; confidence interval at 95%, 95% CI = 1.71-6.08; P = 0.003), as did the allele Ser of TP53 Pro47Ser polymorphism (OR = 1.28; 95% CI = 0.03-2.10; P = 0.01). Comparison of overall survival of patients did not show significant differences. In the analysis of DNA methylation, we observed that 37.5% of meningiomas, 30% of schwannomas and 52.6% of metastases were hypermethylated, suggesting that methylation is important for tumor progression. We suggest that TP53 Pro47Ser and Arg72Pro polymorphisms and DNA hypermethylation are involved in susceptibility for developing extra-axial brain tumors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The O(6)-methylguanine-DNA methyltransferase (MGMT) gene is located at chromosome 10q26 and codes for a DNA repair enzyme that--if active--can counteract the effects of alkylating chemotherapy. Malignant gliomas often have the MGMT gene inactivated due to aberrant methylation of its promoter region. The assessment of the MGMT promoter methylation status has become of clinical relevance as a molecular marker associated with response to alkylating chemotherapy and prolonged survival of glioblastoma patients. MGMT promoter methylation testing is also on the merge of being used as a marker for patient selection within clinical trials, e.g., the current CENTRIC trial that is specifically focusing on patients with MGMT promoter-methylated glioblastomas. In anaplastic gliomas, MGMT promoter methylation is a favorable prognostic marker independent of the type of therapy, i.e., radio- or chemotherapy. This occurrence might be associated with the high incidence of other prognostically favorable molecular markers in these tumors, such as IDH1 mutation, 1p/19q deletion or yet to be identified novel aberrations. A variety of different methods are being used to assess MGMT promoter methylation in clinical samples, which may give rise to inter-laboratory variations in test results. Immunohistochemical determination of MGMT protein expression has not proven reliable for diagnostic purposes. This brief review article aims to summarize the main aspects of MGMT promoter methylation testing in contemporary neuro-oncology, in particular its value as a clinically useful molecular marker, putting it into the context of other molecular markers of clinical use in gliomas of adult patients.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Glioblastomas are the most malignant gliomas with median survival times of only 15 months despite modern therapies. All standard treatments are palliative. Pathogenetic factors are diverse, hence, stratified treatment plans are warranted considering the molecular heterogeneity among these tumors. However, most patients are treated with "one fits all" standard therapies, many of them with minor response and major toxicities. The integration of clinical and molecular information, now becoming available using new tools such as gene arrays, proteomics, and molecular imaging, will take us to an era where more targeted and effective treatments may be implemented. A first step towards the design of such therapies is the identification of relevant molecular mechanisms driving the aggressive biological behavior of glioblastoma. The accumulation of diverse aberrations in regulatory processes enables tumor cells to bypass the effects of most classical therapies available. Molecular alterations underlying such mechanisms comprise aberrations on the genetic level, such as point mutations of distinct genes, or amplifications and deletions, while others result from epigenetic modifications such as aberrant methylation of CpG islands in the regulatory sequence of genes. Epigenetic silencing of the MGMT gene encoding a DNA repair enzyme was recently found to be of predictive value in a randomized clinical trial for newly diagnosed glioblastoma testing the addition of the alkylating agent temozolomide to standard radiotherapy. Determination of the methylation status of the MGMT promoter may become the first molecular diagnostic tool to identify patients most likely to respond that will allow individually tailored therapy in glioblastoma. To date, the test for the MGMT-methylation status is the only tool available that may direct the choice for alkylating agents in glioblastoma patients, but many others may hopefully become part of an arsenal to stratify patients to respective targeted therapies within the next years.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Invasion and metastasis are two important hallmarks of malignant tumors caused by complex genetic and epigenetic alterations. The present study investigated the contribution of aberrant methylation profiles of cancer related genes, APC, BIN1, BMP6, BRCA1, CST6, ESR-b, GSTP1, P14 (ARF), P16 (CDKN2A), P21 (CDKN1A), PTEN, and TIMP3, in the matched axillary lymph node metastasis in comparison to the primary tumor tissue and the adjacent normal tissue from the same breast cancer patients to identify the potential of candidate genes methylation as metastatic markers. METHODS: The quantitative methylation analysis was performed using the SEQUENOM's EpiTYPER? assay which relies on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). RESULTS: The quantitative DNA methylation analysis of the candidate genes showed higher methylation proportion in the primary tumor tissue than that of the matched normal tissue and the differences were significant for the APC, BIN1, BMP6, BRCA1, CST6, ESR-b, P16, PTEN and TIMP3 promoter regions (P<0.05). Among those candidate methylated genes, APC, BMP6, BRCA1 and P16 displayed higher methylation proportion in the matched lymph node metastasis than that found in the normal tissue (P<0.05). The pathway analysis revealed that BMP6, BRCA1 and P16 have a role in prevention of neoplasm metastasis. CONCLUSIONS: The results of the present study showed methylation heterogeneity between primary tumors and metastatic lesion. The contribution of aberrant methylation alterations of BMP6, BRCA1 and P16 genes in lymph node metastasis might provide a further clue to establish useful biomarkers for screening metastasis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aberrant methylation of CpG islands (CGI) occurs in many genes expressed in colonic epithelial cells, and may contribute to the dysregulation of signalling pathways associated with carcinogenesis. This cross-sectional study assessed the relative importance of age, nutritional exposures and other environmental factors in the development of CGI methylation. Rectal biopsies were obtained from 185 individuals (84 male, 101 female) shown to be free of colorectal disease, and for whom measurements of age, body size, nutritional status and blood cell counts were available. We used quantitative DNA methylation analysis combined with multivariate modelling to investigate the relationships between nutritional, anthropometric and metabolic factors and the CGI methylation of 11 genes, together with LINE-1 as an index of global DNA methylation. Age was a consistent predictor of CGI methylation for 9/11 genes but significant positive associations with folate status and negative associations with vitamin D and selenium status were also identified for several genes. There was evidence for positive associations with blood monocyte levels and anthropometric factors for some genes. In general, CGI methylation was higher in males than in females and differential effects of age and other factors on methylation in males and females were identified. In conclusion, levels of age-related CGI methylation in the healthy human rectal mucosa are influenced by gender, the availability of folate, vitamin D and selenium, and perhaps by factors related to systemic inflammation

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although cloning of mammals has been achieved successfully, the percentage of live offspring is very low because of reduced fetal size and fewer implantation sites. Recent studies have attributed such pathological conditions to abnormal reprogramming of the donor cell used for cloning. The inability of the oocyte to fully restore the differentiated status of a somatic cell to its pluripotent and undifferentiated state is normally evidenced by aberrant DNA methylation patterns established throughout the genome during development to blastocyst. These aberrant methylation patterns are associated with abnormal expression of imprinted genes, which among other genes are essential for normal embryo development and gestation. We hypothesized that embryo loss and low implantation rates in cattle derived by somatic cell nuclear transfer (SCNT) are caused by abnormal epigenetic reprogramming of imprinted genes. To verify our hypothesis, we analyzed the parental expression and the differentially methylated domain (DMD) methylation status of the H19 gene. Using a parental-specific analysis, we confirmed for the first time that H19 biallelic expression is tightly associated with a severe demethylation of the paternal H19 DMD in SCNT embryos, suggesting that these epigenetic anomalies to the H19 locus could be directly responsible for the reduced size and low implantation rates of cloned embryos in cattle.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aberrant methylation of seven potential binding sites of the CTCF factor in the differentially methylated region upstream of the H19 gene (H19-DMR) has been suggested as critical for the regulation of IGF2 and H19 imprinted genes. In this study, we analyzed the allele-specific methylation pattern of CTCF binding sites 5 and 6 using methylationsensitive restriction enzyme PCR followed by RFLP analysis in matched tumoral and lymphocyte DNA from head-and-neck squamous cell carcinoma (HNSCC) patients, as well as in lymphocyte DNA from control individuals who were cancer-free. The monoallelic methylation pattern was maintained in CTCF binding site 5 in 22 heterozygous out of 91 samples analyzed. Nevertheless, a biallelic methylation pattern was detected in CTCF binding site 6 in a subgroup of HNSCC patients as a somatic acquired feature of tumor cells. An atypical biallelic methylation was also observed in both tumor and lymphocyte DNA from two patients, and at a high frequency in the control group (29 out of 64 informative controls). Additionally, we found that the C/T transition detected by HhaI RFLP suppressed one dinucleotide CpG in critical CTCF binding site 6, of a mutation showing polymorphic frequencies. Although a heterogeneous methylation pattern was observed after DNA sequencing modified by sodium bisulfite, the biallelic methylation pattern was confirmed in 9 out of 10 HNSCCs. These findings are likely to be relevant in the epigenetic regulation of the DMR, especially in pathological conditions in which the imprinting of IGF2 and H19 genes is disrupted.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Genetic and epigenetic alterations in choroid plexus tumors, a rare neuroepithelial neoplasm most frequently detected in children, are poorly characterized. Epigenetic silencing associated with aberrant CpG island methylation is one mechanism leading to the loss of tumor suppressor functions in cancer cells. Using methylation-specific polymerase chain reaction, the methylation patterns of the genes CDH1 (E-cadherin), RARB (retinoic acid receptor, beta), and SFN (stratifin; 14-3-3 sigma) were retrospectively investigated in eight choroid plexus tumors (five papillomas, two atypical papillomas, and one carcinoma), as well as in two normal cortexes obtained after autopsy from male individuals aged 6 months and 64 years. Among the six pediatric tumors, the mean age at diagnosis was 1.8 years old (range, 0.2-6) and the two adult tumors were detected in a 66-year-old man and a 45-year-old woman. A high frequency of hypermethylation was detected in CDH1 and SFN genes in tumoral and normal cortex tissues. Tumor-specific RARB hypermethylation was observed in four papillomas. Further studies are required to evaluate the role of aberrant methylation in choroid plexus tumor progression. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objectives of this study were to investigate the effect of sexing by flow cytometry on the methylation patterns of the IGF2 and IGF2R genes. Frozen-thawed, unsorted, and sex-sorted sperm samples from four Nellore bulls were used. Each ejaculate was separated into three fractions: non-sexed (NS), sexed for X-sperm (SX), and sexed for Y-sperm (SY). Sperm were isolated from the extender, cryoprotectant, and other cell types by centrifugation on a 40:70% Percoll gradient, and sperm pellets were used for genomic DNA isolation. DNA was used for analyses of the methylation patterns by bisulfite sequencing. Methylation status of the IGF2 and IGF2R genes were evaluated by sequencing 195 and 147 individual clones, respectively. No global differences in DNA methylation were found between NS, SX, and SY groups for the IGF2 (P=0.09) or IGF2R genes (P=0.38). Very specific methylation patterns were observed in the 25th and 26th CpG sites in the IGF2R gene. representing higher methylation in NS than in the SX and SY groups compared with the other CpG sites. Further, individual variation in methylation patterns was found among bulls. In conclusion, the sex-sorting procedure by flow cytometry did not affect the overall DNA methylation patterns of the IGF2 and IGF2R genes, although individual variation in their methylation patterns among bulls was observed. Mol. Reprod. Dev. 79:7784, 2012. (C) 2011 Wiley Periodicals, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have previously linked aging, carcinogenesis, and de novo methylation within the promoter of the estrogen receptor (ER) gene in human colon. We now examine the dynamics of this process for the imprinted gene for insulin-like growth factor II (IGF2). In young individuals, the P2-4 promoters of IGF2 are methylated exclusively on the silenced maternal allele. During aging, this promoter methylation becomes more extensive and involves the originally unmethylated allele. Most adult human tumors, including colon, breast, lung, and leukemias, exhibit increased methylation at the P2-4 IGF2 promoters, suggesting further spreading during the neoplastic process. In tumors, this methylation is associated with diminished or absent IGF2 expression from the methylated P3 promoter but maintained expression from P1, an upstream promoter that is not contained within the IGF2 CpG island. Our results demonstrate a remarkable evolution of methylation patterns in the imprinted promoter of the IGF2 gene during aging and carcinogenesis, and provide further evidence for a potential link between aberrant methylation and diseases of aging.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hyperplastic polyps have traditionally been regarded as nonneoplastic polyps lacking malignant potential. The demonstration of genetic alterations within these lesions indicates an underlying neoplastic cause. There is evidence that hyperplastic polyps are heterogeneous. Most are innocuous, but subsets may have malignant potential. Risk factors for neoplastic progression include multiple, large, and proximally located polyps. Aberrant methylation resulting in the silencing of cancer genes may be an important underlying mechanism, particularly in pathways progressing to tumors with DNA microsatellite instability. Lesions intermediate between hyperplastic polyp and cancer include admired polyps and serrated adenomas. Currently, pathologists have different thresholds for diagnosing serrated adenomas, including the distinction from large hyperplastic polyps. Reasons for over looking this pathway in the past may include rapid tumor progression and the fact that proximally located hyperplastic polyps may be flat and not especially numerous. Management of the serrated pathway of colorectal neoplasia may require novel approaches to screening, early detection, and prevention.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertation for applying to a Master’s Degree in Molecular Genetics and Biomedicine submitted to the Sciences and Technology Faculty of New University of Lisbon

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The CD44 adhesion receptor is silenced in highly malignant neuroblastomas (NBs) with MYCN amplification. Because its functional expression is associated with decreased tumorigenic properties, CD44 behaves as a tumor suppressor gene in NB and other cancers. Given that the precise mechanisms responsible for CD44 silencing are not elucidated, we investigated whether CD44 expression could be regulated by DNA hypermethylation. The methylation status of CD44 gene promoter and exon 1 regions was analyzed in 12 NB cell lines and 21 clinical samples after bisulfite genomic modification, followed by PCR and single-strand conformation polymorphism analysis and genomic sequencing. The results showed that almost all CD44-negative cell lines displayed hypermethylation in both regions, whereas all CD44-expressing cell lines were unmethylated. These observations correlated with the ability to restore CD44 mRNA and protein expression by treatment of CD44-negative cells with the 5-aza-2'-deoxycytidine demethylating agent. In contrast, no CD44 gene hypermethylation could be detected in 21 NB clinical samples of different stages, irrespective of CD44 expression. Although our results suggest that aberrant methylation of promoter and exon 1 regions is involved in CD44 silencing in NB cell lines, they also indicate that methylation of unidentified regulatory sequences or methylation-independent mechanisms also control the expression of CD44 in primary NB tumors and cell lines. We therefore conclude that CD44 silencing is controlled by complex and tumor cell-specific processes, including gene hypermethylation. Further investigation of other mechanisms and genes involved in CD44 regulation will be needed before demethylation-mediated reactivation of the CD44 gene can be considered as therapeutic strategy for neuroblastoma and perhaps other related cancers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)