972 resultados para ab initio electronic structure theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetic coupling constant of selected cuprate superconductor parent compounds has been determined by means of embedded cluster model and periodic calculations carried out at the same level of theory. The agreement between both approaches validates the cluster model. This model is subsequently employed in state-of-the-art configuration interaction calculations aimed to obtain accurate values of the magnetic coupling constant and hopping integral for a series of superconducting cuprates. Likewise, a systematic study of the performance of different ab initio explicitly correlated wave function methods and of several density functional approaches is presented. The accurate determination of the parameters of the t-J Hamiltonian has several consequences. First, it suggests that the appearance of high-Tc superconductivity in existing monolayered cuprates occurs with J/t in the 0.20¿0.35 regime. Second, J/t=0.20 is predicted to be the threshold for the existence of superconductivity and, third, a simple and accurate relationship between the critical temperatures at optimum doping and these parameters is found. However, this quantitative electronic structure versus Tc relationship is only found when both J and t are obtained at the most accurate level of theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetic coupling constant of selected cuprate superconductor parent compounds has been determined by means of embedded cluster model and periodic calculations carried out at the same level of theory. The agreement between both approaches validates the cluster model. This model is subsequently employed in state-of-the-art configuration interaction calculations aimed to obtain accurate values of the magnetic coupling constant and hopping integral for a series of superconducting cuprates. Likewise, a systematic study of the performance of different ab initio explicitly correlated wave function methods and of several density functional approaches is presented. The accurate determination of the parameters of the t-J Hamiltonian has several consequences. First, it suggests that the appearance of high-Tc superconductivity in existing monolayered cuprates occurs with J/t in the 0.20¿0.35 regime. Second, J/t=0.20 is predicted to be the threshold for the existence of superconductivity and, third, a simple and accurate relationship between the critical temperatures at optimum doping and these parameters is found. However, this quantitative electronic structure versus Tc relationship is only found when both J and t are obtained at the most accurate level of theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contrary to the antiferromagnetic and insulating character of bulk NiO, one-dimensional chains of this material can become half metallic due to the lower coordination of their atoms. Here we present ab initio electronic structure and quantum transport calculations of ideal infinitely long NiO chains and of more realistic short ones suspended between Ni electrodes. While infinite chains are insulating, short suspended chains are half-metallic minority-spin conductors that displays very large magnetoresistance and a spin-valve behavior controlled by a single atom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetic structure of the edge-sharing cuprate compound Li2CuO2 has been investigated with highly correlated ab initio electronic structure calculations. The first- and second-neighbor in-chain magnetic interactions are calculated to be 142 and -22 K, respectively. The ratio between the two parameters is smaller than suggested previously in the literature. The interchain interactions are antiferromagnetic in nature and of the order of a few K only. Monte Carlo simulations using the ab initio parameters to define the spin model Hamiltonian result in a Nel temperature in good agreement with experiment. Spin population analysis situates the magnetic moment on the copper and oxygen ions between the completely localized picture derived from experiment and the more delocalized picture based on local-density calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetic structure of the edge-sharing cuprate compound Li2CuO2 has been investigated with highly correlated ab initio electronic structure calculations. The first- and second-neighbor in-chain magnetic interactions are calculated to be 142 and -22 K, respectively. The ratio between the two parameters is smaller than suggested previously in the literature. The interchain interactions are antiferromagnetic in nature and of the order of a few K only. Monte Carlo simulations using the ab initio parameters to define the spin model Hamiltonian result in a Nel temperature in good agreement with experiment. Spin population analysis situates the magnetic moment on the copper and oxygen ions between the completely localized picture derived from experiment and the more delocalized picture based on local-density calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetic structure of the edge-sharing cuprate compound Li2CuO2 has been investigated with highly correlated ab initio electronic structure calculations. The first- and second-neighbor in-chain magnetic interactions are calculated to be 142 and -22 K, respectively. The ratio between the two parameters is smaller than suggested previously in the literature. The interchain interactions are antiferromagnetic in nature and of the order of a few K only. Monte Carlo simulations using the ab initio parameters to define the spin model Hamiltonian result in a Nel temperature in good agreement with experiment. Spin population analysis situates the magnetic moment on the copper and oxygen ions between the completely localized picture derived from experiment and the more delocalized picture based on local-density calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a previous work, we carried out inelastic neutron scattering (INS) spectroscopy experiments and preliminary first principles calculations on alkali metal hydrides. The complete series of alkali metal hydrides, LiH, NaH, KH, RbH and CsH was measured in the high-resolution TOSCA INS spectrometer at ISIS. Here, we present the results of ab initio electronic structure calculations of the properties of the alkali metal hydrides using both the local density approximation (LDA) and the generalized gradient approximation (GGA), using the Perdew–Burke–Ernzerhof (PBE) parameterization. Properties calculated were lattice parameters, bulk moduli, dielectric constants, effective charges, electronic densities and inelastic neutron scattering (INS) spectra. We took advantage of the currently available computer power to use full lattice dynamics theory to calculate thermodynamic properties for these materials. For the alkali metal hydrides (LiH, NaH, KH, RbH and CsH) using lattice dynamics, we found that the INS spectra calculated using LDA agreed better with the experimental data than the spectra calculated using GGA. Both zero-point effects and thermal contributions to free energies had an important effect on INS and several thermodynamic properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have carried out an ab initio electronic structure calculations of electron transfer couplings between chromophores in the bacterial photosynthetic reaction center. The couplings agree remarkably well with parameters obtained from recent quantum dynamical modeling of experimental data assuming an explicit intermediate mechanism. We also have computed couplings on the M-side of the reaction center and have found that the interaction of the primary donor to the M-side intermediate bacteriochlorophyll is quite small because of destructive interference of the two localized coupling matrix elements. This may explain the slow rate of electron transfer down the M-side of the reaction center.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nature of vibrational anharmonicity has been examined for the case of small water clusters using second-order vibrational perturbation theory (VPT2) applied on second-order Møller–Plesset perturbation theory (MP2) potential energy surfaces. Using a training set of 16 water clusters (H2O)n=2–6,8,9 with a total of 723 vibrational modes, we determined scaling factors that map the harmonic frequencies onto anharmonic ones. The intermolecular modes were found to be substantially more anharmonic than intramolecular bending and stretching modes. Due to the varying levels of anharmonicity of the intermolecular and intramolecular modes, different frequency scaling factors for each region were necessary to achieve the highest accuracy. Furthermore, new scaling factors for zero-point vibrational energies (ZPVE) and vibrational corrections to the enthalpy (ΔHvib) and the entropy (Svib) have been determined. All the scaling factors reported in this study are different from previous works in that they are intended for hydrogen-bonded systems, while others were built using experimental frequencies of covalently bonded systems. An application of our scaling factors to the vibrational frequencies of water dimer and thermodynamic functions of 11 larger water clusters highlights the importance of anharmonic effects in hydrogen-bonded systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For (H2O)n where n = 1–10, we used a scheme combining molecular dynamics sampling with high level ab initio calculations to locate the global and many low lying local minima for each cluster. For each isomer, we extrapolated the RI-MP2 energies to their complete basis set limit, included a CCSD(T) correction using a smaller basis set and added finite temperature corrections within the rigid-rotor-harmonic-oscillator (RRHO) model using scaled and unscaled harmonic vibrational frequencies. The vibrational scaling factors were determined specifically for water clusters by comparing harmonic frequencies with VPT2 fundamental frequencies. We find the CCSD(T) correction to the RI-MP2 binding energy to be small (<1%) but still important in determining accurate conformational energies. Anharmonic corrections are found to be non-negligble; they do not alter the energetic ordering of isomers, but they do lower the free energies of formation of the water clusters by as much as 4 kcal/mol at 298.15 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An efficient mixed molecular dynamics/quantum mechanics model has been applied to the water cluster system. The use of the MP2 method and correlation consistent basis sets, with appropriate correction for BSSE, allows for the accurate calculation of electronic and free energies for the formation of clusters of 2−10 water molecules. This approach reveals new low energy conformers for (H2O)n=7,9,10. The water heptamer conformers comprise five different structural motifs ranging from a three-dimensional prism to a quasi-planar book structure. A prism-like structure is favored energetically at low temperatures, but a chair-like structure is the global Gibbs free energy minimum past 200 K. The water nonamers exhibit less complexity with all the low energy structures shaped like a prism. The decamer has 30 conformers that are within 2 kcal/mol of the Gibbs free energy minimum structure at 298 K. These structures are categorized into four conformer classes, and a pentagonal prism is the most stable structure from 0 to 320 K. Results can be used as benchmark values for empirical water models and density functionals, and the method can be applied to larger water clusters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show, using ab initio density functional theory calculations, that Mn dimers adsorbed on graphene nanoribbons (Mn(2)/GNRs) present a magnetic bistability, as does the isolated Mn dimer. Our total energy results indicate that Mn dimers lying along the edge sites of zigzag GNRs represent the most likely configuration. We find that similar to the isolated Mn(2) molecule, the antiferromagnetic coupling represents the ground state for Mn(2)/GNR, and the spin density configuration of the GNR does not play an important role on the net magnetic moment of Mn(2), which makes GNRs an ideal substrate for adsorption of these molecules. The ground state and the excited state configuration of the Mn dimer, viz., low-spin (LS) and high-spin (HS), are maintained in the face of changes in the spin density configuration of the substrate. Here we find that the Mn(2)/GNR systems exhibit a LS <-> HS binary behavior, which can be considered as a useful property in the development of nanomemories based upon metallic clusters. (C) 2011 American Institute of Physics. [doi:10.1063/1.3553849]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a methodology for the computation of Raman scattering cross-sections and depolarization ratios within the Placzek Polarizability Theory is described. The polarizability gradients are derived from the values of the dynamic polarizabilities computed at the excitation frequencies using ab initio Linear Response Theory. A sample application of the computational program, at the HF, MP2 and CCSD levels of theory, is presented for H2O and NH3. The results show that high correlated levels of theory are needed to achieve good agreement with experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An algorithm is presented for the generation of molecular models of defective graphene fragments, containing a majority of 6-membered rings with a small number of 5- and 7-membered rings as defects. The structures are generated from an initial random array of points in 2D space, which are then subject to Delaunay triangulation. The dual of the triangulation forms a Voronoi tessellation of polygons with a range of ring sizes. An iterative cycle of refinement, involving deletion and addition of points followed by further triangulation, is performed until the user-defined criteria for the number of defects are met. The array of points and connectivities are then converted to a molecular structure and subject to geometry optimization using a standard molecular modeling package to generate final atomic coordinates. On the basis of molecular mechanics with minimization, this automated method can generate structures, which conform to user-supplied criteria and avoid the potential bias associated with the manual building of structures. One application of the algorithm is the generation of structures for the evaluation of the reactivity of different defect sites. Ab initio electronic structure calculations on a representative structure indicate preferential fluorination close to 5-ring defects.