210 resultados para Zariski varietà algebriche Nullstellensatz
Resumo:
In questa tesi introdurremo la topologia di Zariski sullo spazio affine n-dimensionale. Ne mostreremo alcune proprietà e arriveremo a dimostrare che ogni insieme algebrico è esprimibile come unione finita di varietà.
Resumo:
L’obiettivo di questa tesi è costruire una corrispondenza tra oggetti algebrici, gli ideali, e oggetti geometrici, le varietà algebriche, e studiarne il comportamento nel caso affine e proiettivo. Nel caso affine, lavorando in campi algebricamente chiusi, si descrive una corrispondenza biunivoca tra ideali radicali e varietà affini non vuote. Ciò permette di riformulare ogni affermazione sulle varietà affini in un’affermazione sugli ideali radicali, e viceversa; in particolare si descrivono le relazioni tra le operazioni su ideali e su varietà: alla somma degli ideali corrisponde l’intersezione di varietà, a prodotto e intersezione di ideali corrisponde l’unione di varietà, al quoziente di ideali corrisponde la chiusura di Zariski della differenza insiemistica delle varietà. Inoltre ad ogni ideale primo corrisponde una varietà irriducibile e agli ideali massimali corrispondono i punti dello spazio. Nel caso proiettivo invece, si considerano ideali omogenei e varietà proiettive, definite da polinomi omogenei. Restringendosi a campi algebricamente chiusi, si ha una corrispondenza biunivoca tra varietà proiettive non vuote e ideali radicali omogenei contenuti in un particolare ideale, (x_0,…,x_n). Con queste restrizioni la corrispondenza tra le operazioni algebriche e geometriche è la stessa studiata nel caso affine. Infine si introduce la chiusura proiettiva di una varietà affine, che è la più piccola varietà proiettiva che contiene una varietà affine data.
Resumo:
Studio degli insiemi algebrici e delle varietà affini: proprietà, frecce e risultati, tra cui il teorema degli zeri di Hilbert.
Resumo:
Il teorema della funzione implicita, valido nel caso di varietà differenziabili, non risulta vero se si prendono in analisi varietà algebriche affini con la topologia di Zariski. Dopo aver introdotto le nozioni di morfismo piatto e di morfismo non ramificato, si arriva ai morfismi étale, definiti proprio come quei morfismi che sono piatti e non ramificati; nella seconda parte si considerano i morfismi di varietà non singolari dimostrando che la classe dei morfismi étale coincide esattamente con quei morfismi che inducono isomorfismi sugli spazi tangenti. Si approfondisce poi la nozione di morfismo étale da un punto di vista algebrico e infine la nozione di intorno étale di un punto, che si basa su quella di morfismo étale.
Resumo:
L'elaborato ha come soggetto le varietà algebriche affini. I primi due capitoli vanno ad analizzare nel dettaglio la corrispondenza fra gli ideali nell'anello dei polinomi e le varietà, che risulta biunivoca nel caso in cui si lavori in un campo algebricamente chiuso e ci si restringa agli ideali radicali. Il terzo e ultimo capitolo è dedicato allo studio di due concetti fondamentali per le varietà algebriche: la loro dimensione e i loro punti singolari. Vengono introdotte tre nozioni di dimensione di una varietà algebrica e se ne dimostra l'equivalenza. Per lo studio delle singolarità, si introduce il cosiddetto criterio jacobiano, basato sullo studio della matrice jacobiana ottenuta tramite le derivate parziali dei polinomi che definiscono la varietà.
Resumo:
In questa tesi vengono studiati anelli commutativi unitari in cui ogni catena ascentente o ogni catena discendente di ideali diventa stazionaria dopo un numero finito di passi. Un anello commutativo unitario R in cui vale la condizione della catena ascendente, ossia ogni catena ascendente di ideali a_1 ⊆ a_2 ⊆ · · · ⊆ R diventa stazionaria dopo un numero finito di passi, o, equivalentemente, in cui ogni ideale è generato da un numero finito di elementi, si dice noetheriano. Questa classe di anelli deve il proprio nome alla matematica tedesca Emmy Noether che, nel 1921, studiando un famoso risultato di Lasker per ideali di anelli di polinomi, si accorse che esso valeva in tutti gli anelli in cui gli ideali sono finitamente generati. Questi anelli giocano un ruolo importante in geometria algebrica, in quanto le varietà algebriche sono luoghi di zeri di polinomi in più variabili a coefficienti in un campo K e le proprietà degli ideali dell’anello K[x_1, . . . , x_n] si riflettono nelle proprietà delle varietà algebriche di K^n. Inoltre, per questi anelli esistono procedure algoritmiche che sono possibili proprio grazie alla condizione della catena ascendente. Un anello commutativo unitario R in cui vale la condizione della catena discendente, ossia ogni ogni catena discendente di ideali . . . a_2 ⊆ a_1 ⊆ R diventa stazionaria dopo un numero finito di passi, si dice artiniano, dal nome del matematico austriaco Emil Artin che li introdusse e ne studiò le proprietà. Il Teorema di Akizuki afferma che un anello commutativo unitario R è artiniano se e solo se è noetheriano di dimensione zero, ossia ogni suo ideale primo è massimale.
Resumo:
La tesi si prefigge di definire la molteplicità dell’intersezione tra due curve algebriche piane. La trattazione sarà sviluppata in termini algebrici, per mezzo dello studio degli anelli locali. In seguito, saranno discusse alcune proprietà e sarà proposto qualche esempio di calcolo. Nel terzo capitolo, l’interesse volgerà all’intersezione tra una varietà e un’ipersuperficie di uno spazio proiettivo n-dimensionale. Verrà definita un’ulteriore di molteplicità dell’intersezione, che costituirà una generalizzazione di quella menzionata nei primi due capitoli. A partire da questa definizione, sarà possibile enunciare una versione estesa del Teorema di Bezout. L’ultimo capitolo focalizza l’attenzione nuovamente sulle curve piane, con l’intento di studiarne la topologia in un intorno di un punto singolare. Si introduce, in particolare, l’importante nozione di link di un punto singolare.
Resumo:
We prove a general Zariski-van Kampen-Lefschetz type theorem for higher homotopy groups of generic and nongeneric pencils on singular open complex spaces.
Resumo:
Pós-graduação em Educação Matemática - IGCE
Sitografia corso Lingua tedesca A2 (diffusione del tedesco nel mondo; varietà nazionali del tedesco)
Resumo:
Lo scopo di questa tesi è il calcolo dell'anello di coomologia di de Rham della varietà delle bandiere di uno spazio vettoriale complesso. Per prima cosa introduciamo la coomologia di de Rham e riassumiamo le sue principali proprietà. Definiamo poi la varietà delle bandiere di uno spazio vettoriale complesso, e, utilizzando la teoria delle classi di Chern, ne calcoliamo l'anello di coomologia di de Rham.