1000 resultados para XY model
Resumo:
Monte Carlo Simulations were carried out using a nearest neighbour ferromagnetic XYmodel, on both 2-D and 3-D quasi-periodic lattices. In the case of 2-D, both the unfrustrated and frustrated XV-model were studied. For the unfrustrated 2-D XV-model, we have examined the magnetization, specific heat, linear susceptibility, helicity modulus and the derivative of the helicity modulus with respect to inverse temperature. The behaviour of all these quatities point to a Kosterlitz-Thouless transition occuring in temperature range Te == (1.0 -1.05) JlkB and with critical exponents that are consistent with previous results (obtained for crystalline lattices) . However, in the frustrated case, analysis of the spin glass susceptibility and EdwardsAnderson order parameter, in addition to the magnetization, specific heat and linear susceptibility, support a spin glass transition. In the case where the 'thin' rhombus is fully frustrated, a freezing transition occurs at Tf == 0.137 JlkB , which contradicts previous work suggesting the critical dimension of spin glasses to be de > 2 . In the 3-D systems, examination of the magnetization, specific heat and linear susceptibility reveal a conventional second order phase transition. Through a cumulant analysis and finite size scaling, a critical temperature of Te == (2.292 ± 0.003) JI kB and critical exponents of 0:' == 0.03 ± 0.03, f3 == 0.30 ± 0.01 and I == 1.31 ± 0.02 have been obtained.
Resumo:
We consider the 2d XY Model with topological lattice actions, which are invariant against small deformations of the field configuration. These actions constrain the angle between neighbouring spins by an upper bound, or they explicitly suppress vortices (and anti-vortices). Although topological actions do not have a classical limit, they still lead to the universal behaviour of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition — at least up to moderate vortex suppression. In the massive phase, the analytically known Step Scaling Function (SSF) is reproduced in numerical simulations. However, deviations from the expected universal behaviour of the lattice artifacts are observed. In the massless phase, the BKT value of the critical exponent ηc is confirmed. Hence, even though for some topological actions vortices cost zero energy, they still drive the standard BKT transition. In addition we identify a vortex-free transition point, which deviates from the BKT behaviour.
Resumo:
The text of this thesis provides historical introduction to the two studies Theoretical Model of Superconductivity and the Martensitic Transformation in A15 Compounds" and "A Comparison of Kadanoff-Migdal Renormalization with New Monte Carlo Results for the XY Model", contained herein as appendices.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
What entanglement is present in naturally occurring physical systems at thermal equilibrium? Most such systems are intractable and it is desirable to study simple but realistic systems that can be solved. An example of such a system is the one-dimensional infinite-lattice anisotropic XY model. This model is exactly solvable using the Jordan-Wigner transform, and it is possible to calculate the two-site reduced density matrix for all pairs of sites. Using the two-site density matrix, the entanglement of formation between any two sites is calculated for all parameter values and temperatures. We also study the entanglement in the transverse Ising model, a special case of the XY model, which exhibits a quantum phase transition. It is found that the next-nearest-neighbor entanglement (though not the nearest-neighbor entanglement) is a maximum at the critical point. Furthermore, we show that the critical point in the transverse Ising model corresponds to a transition in the behavior of the entanglement between a single site and the remainder of the lattice.
Resumo:
The derivation of time evolution equations for slow collective variables starting from a micro- scopic model system is demonstrated for the tutorial example of the classical, two-dimensional XY model. Projection operator techniques are used within a nonequilibrium thermodynamics framework together with molecular simulations in order to establish the building blocks of the hydrodynamics equations: Poisson brackets that determine the deterministic drift, the driving forces from the macroscopic free energy and the friction matrix. The approach is rather general and can be applied for deriving the equations of slow variables for a broad variety of systems.
Resumo:
We study the real-time evolution of large open quantum spin systems in two spatial dimensions, whose dynamics is entirely driven by a dissipative coupling to the environment. We consider different dissipative processes and investigate the real-time evolution from an ordered phase of the Heisenberg or XY model towards a disordered phase at late times, disregarding unitary Hamiltonian dynamics. The corresponding Kossakowski-Lindblad equation is solved via an efficient cluster algorithm. We find that the symmetry of the dissipative process determines the time scales, which govern the approach towards a new equilibrium phase at late times. Most notably, we find a slow equilibration if the dissipative process conserves any of the magnetization Fourier modes. In these cases, the dynamics can be interpreted as a diffusion process of the conserved quantity.
Resumo:
Acknowledgement One of us (AP) wishes to acknowledge S. Flach for enlightening discussions about the relationship between the DNLS equation and the rotor model.
Resumo:
Quantum clock models are statistical mechanical spin models which may be regarded as a sort of bridge between the one-dimensional quantum Ising model and the one-dimensional quantum XY model. This thesis aims to provide an exhaustive review of these models using both analytical and numerical techniques. We present some important duality transformations which allow us to recast clock models into different forms, involving for example parafermions and lattice gauge theories. Thus, the notion of topological order enters into the game opening new scenarios for possible applications, like topological quantum computing. The second part of this thesis is devoted to the numerical analysis of clock models. We explore their phase diagram under different setups, with and without chirality, starting with a transverse field and then adding a longitudinal field as well. The most important observables we take into account for diagnosing criticality are the energy gap, the magnetisation, the entanglement entropy and the correlation functions.
Resumo:
The integrable open-boundary conditions for the model of three coupled one-dimensional XY spin chains are considered in the framework of the quantum inverse scattering method. The diagonal boundary K-matrices are found and a class of integrable boundary terms is determined. The boundary model Hamiltonian is solved by using the coordinate space Bethe ansatz technique and Bethe ansatz equations are derived. (C) 1998 Elsevier Science B.V.
Resumo:
The Jordan-Wigner fermionization for the one-dimensional Bariev model of three coupled XY chains is formulated. The L-matrix in terms of fermion operators and the R-matrix are presented explicitly. Furthermore, the graded reflection equations and their solutions are discussed.