1000 resultados para XSox1 III
Resumo:
近来的研究表明,转录后调控对于调节脊椎动物发育过程中的细胞分化,细胞分裂及基因区域特异性表达都具有重要作用。转录后调控包括对mRNA稳定性、翻译效率、细胞内定位及poly(A)水平的调控等。Sox2基因是脊椎动物早期发育中最早表达的神经系统特异性基因之一,是脊椎动物早期神经系统发育的重要调节因子。通过生物信息学分析,我们发现,在脊椎动物Sox2 mRNA 3’非翻译区中存在4段非常保守的富含AU的区域,通过报告基因分析等手段研究发现Sox2 3’非翻译区中的部分元件可显著提高报告基因表达,提示我们Sox2的表达可能受到转录后调控。 我们通过对爪蟾Xfhl3基因序列分析时发现其3’非翻译区存在一段保守的只在两栖类具有的序列,我们克隆并检测了该基因的表达图式,并采用报告基因分析等手段研究了Xfhl3基因 3’非翻译区对报告基因表达的影响。结果发现其3’UTR可抑制报告基因表达水平。由于Xfhl3基因3’UTR中这段序列只在爪蟾基因中高度保守,而在在进化过程中两栖动物最独特的便是变态现象,这提示我们去探索这段爪蟾特有的保守序列是否与两栖类变态发育密切相关。由于甲状腺激素在两栖类的变态中的重要作用,因此我们设想Xfhl3基因的3’UTR中的保守序列可能与甲状腺激素相互作用共同调节爪蟾的变态过程。我们的初步结果表明,在爪蟾胚胎中,甲状腺激素对于正常报告基因表达没有明显的作用,但是在插入Xfhl3基因3’UTR中保守序列后,甲状腺激素处理可显著提高报告基因的表达,表明甲状腺素可能直接或间接通过与该段保守序列参与基因的表达调控。 脊椎动物的眼是一个功能非常特殊的器官,受到复杂的调控网络的调节,众多对神经发生重要的基因在眼中表达并参与了这一调节过程。我们克隆了非洲爪蟾的Sox1基因并研究了它在非洲爪蟾早期发育过程中的时空表达图式,比较了Sox1-3基因在发育的脑和眼中的表达图式,进一步阐明SoxB1基因家族在脊椎动物神经系统发生过程中的作用。此外,我们还克隆了非洲爪蟾MGC85160基因并利用RT-PCR和胚胎整体原位杂交技术探测它在不同胚胎阶段的时空表达图式。结果表明母源性表达的MGC85160基因早期主要在动物极表达;从神经板期开始在发育的中枢神经系统和眼中表达,石蜡切片显示它主要在视网膜和晶状体中表达,说明该基因在爪蟾早期外胚层的模式化以及中枢神经系统的发育过程中可能起到重要作用。 此外,我们还研究了鱇浪白鱼的早期发育分期和眼睛特异基因的表达图式。鱇浪白鱼(Anabarilius grahami )是云南抚仙湖的特有鱼种。我们首次完成了鱇浪白鱼早期发育的完整分期,主要包括合子期,卵裂期,囊胚期,原肠期,体节期和孵化期六个主要的时期。为了理解鱇浪白鱼眼睛的发育,我们克隆并检测了在眼发育早期起关键作用的基因Sox2, Pax6a, Six3a 和 Rx2的表达图式。结果表明这四个基因全部在尾芽期的前端神经板中表达,随后在视网膜原基细胞中表达明显。在晚期阶段,除Rx2外其它三个基因也在晶状体中表达。其表达模式与斑马鱼中同源基因的表达很相似,说明涉及眼发育的分子网络在鱇浪白鱼中也是高度保守的。
Resumo:
The mixed double-decker Eu\[Pc(15C5)4](TPP) (1) was obtained by base-catalysed tetramerisation of 4,5-dicyanobenzo-15-crown-5 using the half-sandwich complex Eu(TPP)(acac) (acac = acetylacetonate), generated in situ, as the template. For comparative studies, the mixed triple-decker complexes Eu2\[Pc(15C5)4](TPP)2 (2) and Eu2\[Pc(15C5)4]2(TPP) (3) were also synthesised by the raise-by-one-story method. These mixed ring sandwich complexes were characterised by various spectroscopic methods. Up to four one-electron oxidations and two one-electron reductions were revealed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). As shown by electronic absorption and infrared spectroscopy, supramolecular dimers (SM1 and SM3) were formed from the corresponding double-decker 1 and triple-decker 3 in the presence of potassium ions in MeOH/CHCl3.
Resumo:
The electrochemical characteristics of a series of heteroleptic tris(phthalocyaninato) complexes with identical rare earths or mixed rare earths (Pc)M(OOPc)M(OOPc) [M = Eu...Lu, Y; H2Pc = unsubstituted phthalocyanine, H2(OOPc) = 3,4,12,13,21,22,30,31-octakis(octyloxy)phthalocyanine] and (Pc)Eu(OOPc)Er(OOPc) have been recorded and studied comparatively by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in CH2Cl2 containing 0.1 M tetrabutylammonium perchlorate (TBAP). Up to five quasi-reversible one-electron oxidations and four one-electron reductions have been revealed. The half-wave potentials of the first, second and fifth oxidations depend on the size of the metal center, but the fifth changes in the opposite direction to that of the first two. Moreover, the difference in redox potentials of the first oxidation and first reduction for (Pc)M(OOPc)M(OOPc), 0.85−0.98 V, also decreases linearly along with decreasing rare earth ion radius, clearly showing the rare earth ion size effect and indicating enhanced π−π interactions in the triple-deckers connected by smaller lanthanides. This order follows the red-shift seen in the lowest energy band of triple-decker compounds. The electronic differences between the lanthanides and yttrium are more apparent for triple-decker sandwich complexes than for the analogous double-deckers. By comparing triple-decker, double-decker and mononuclear [ZnII] complexes containing the OOPc ligand, the HOMO−LUMO gap has been shown to contract approximately linearly with the number of stacked phthalocyanine ligands.
Resumo:
A combination of X-ray diffraction, thermal analysis and Raman spectroscopy was employed to characterise the ageing of alumina hydrolysates synthesised from the hydrolysis of anhydrous tri-sec-butoxyaluminium(III). X-Ray diffraction showed that the alumino-oxy(hydroxy) hydrolysates were pseudoboehmite. For boehmite the lamellar spacings are in the b direction and multiple d(020) peaks are observed for the un-aged hydrolysate. After 4 h of ageing, a single d(020) peak is observed at 6.53 Å. Thermal analysis showed five endotherms at 70, 140, 238, 351 and 445°C. These endotherms are attributed to the dehydration and dehydroxylation of the boehmite-like hydrolysate. Raman spectroscopy shows the presence of bands for the washed hydrolysates at 333, 355, 414, 455, 475, 495, 530 and 675 cm–1. These bands are attributed to pseudoboehmite. Ageing of the hydrolysates results in an increase in the crystallite size of the pseudoboehmite.
Resumo:
The electrochemistry of homoleptic substituted phthalocyaninato rare earth double-decker complexes M(TBPc)2 and M(OOPc)2 [M = Y, La...Lu except Pm; H2TBPc = 3(4),12(13),21(22),30(31)-tetra-tert-butylphthalocyanine, H2OOPc = 3,4,12,13,21,22,30,31-octakis(octyloxy)phthalocyanine] has been comparatively studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in CH2Cl2 containing 0.1 M tetra-n-butylammonium perchlorate (TBAP). Two quasi-reversible one-electron oxidations and three or four quasi-reversible one-electron reductions have been revealed for these neutral double-deckers of two series of substituted complexes, respectively. For comparison, unsubstituted bis(phthalocyaninato) rare earth analogues M(Pc)2 (M = Y, La...Lu except Pm; H2Pc = phthalocyanine) have also been electrochemically investigated. Two quasi-reversible one-electron oxidations and up to five quasi-reversible one-electron reductions have been revealed for these neutral double-decker compounds. The three bis(phthalocyaninato)cerium compounds display one cerium-centered redox wave between the first ligand-based oxidation and reduction. The half-wave potentials of the first and second oxidations and first reduction for double-deckers of the tervalent rare earths depend on the size of the metal center. The difference between the redox potentials of the second and third reductions for MIII(Pc)2, which represents the potential difference between the first oxidation and first reduction of [MIII(Pc)2]−, lies in the range 1.08−1.37 V and also gradually diminishes along with the lanthanide contraction, indicating enhanced π−π interactions in the double-deckers connected by the smaller, lanthanides. This corresponds well with the red-shift of the lowest energy band observed in the electronic absorption spectra of reduced double-decker [MIII(Pc′)2]− (Pc′ = Pc, TBPc, OOPc).
Resumo:
The infrared (IR) spectroscopic data and Raman spectroscopic properties for a series of 13 “pinwheel-like” homoleptic bis(phthalocyaninato) rare earth complexes M[Pc(α-OC5H11)4]2 [M = Y and Pr–Lu except Pm; H2Pc(α-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine] have been collected and comparatively studied. Both the IR and Raman spectra for M[Pc(α-OC5H11)4]2 are more complicated than those of homoleptic bis(phthalocyaninato) rare earth analogues, namely M(Pc)2 and M[Pc(OC8H17)8]2, but resemble (for IR) or are a bit more complicated (for Raman) than those of heteroleptic counterparts M(Pc)[Pc(α-OC5H11)4], revealing the decreased molecular symmetry of these double-decker compounds, namely S8. Except for the obvious splitting of the isoindole breathing band at 1110–1123 cm−1, the IR spectra of M[Pc(α-OC5H11)4]2 are quite similar to those of corresponding M(Pc)[Pc(α-OC5H11)4] and therefore are similarly assigned. With laser excitation at 633 nm, Raman bands derived from isoindole ring and aza stretchings in the range of 1300–1600 cm−1 are selectively intensified. The IR spectra reveal that the frequencies of pyrrole stretching and pyrrole stretching coupled with the symmetrical CH bending of –CH3 groups are sensitive to the rare earth ionic size, while the Raman technique shows that the bands due to the isoindole stretchings and the coupled pyrrole and aza stretchings are similarly affected. Nevertheless, the phthalocyanine monoanion radical Pc′− IR marker band of bis(phthalocyaninato) complexes involving the same rare earth ion is found to shift to lower energy in the order M(Pc)2 > M(Pc)[Pc(α-OC5H11)4] > M[Pc(α-OC5H11)4]2, revealing the weakened π–π interaction between the two phthalocyanine rings in the same order.
Resumo:
In the title compound, [Al(C8H4F3O2S)3]3[Fe(C8H4F3O2S)3], the metal centre is statistically occupied by AlIII and FeIII cations in a 3:1 ratio. The metal centre is within an octahedral O6 donor set defined by three chelating substituted acetoacetonate anions. The ligands are arranged around the periphery of the molecule with a mer geometry of the S atoms.
Resumo:
This study compared two popular measures of cognitive ability for preschool children. The Wechsler Preschool and Primary Scale of Intelligence – Third Edition (WPPSI-III) and the Stanford-Binet Intelligence Scale – Fifth Edition (SB5) were administered in a counterbalanced order to 36 typically developing 4-year-old children. There were significant correlations among all WPPSI-III and SB5 composite scores but a small number of children had notable differences between their scores on the two measures. Children tended to prefer the SB5 over the WPPSI-III. Implications for practitioners who assess preschool-aged children are discussed.
Resumo:
Films of piezoelectric PVDF and P(VDF-TrFE) were exposed to vacuum UV (115-300 nm VUV) and -radiation to investigate how these two forms of radiation affect the chemical, morphological, and piezoelectric properties of the polymers. The extent of crosslinking was almost identical in both polymers after -irradiation, but surprisingly, was significantly higher for the TrFE copolymer after VUV-irradiation. Changes in the melting behavior were also more significant in the TrFE copolymer after VUV-irradiation due to both surface and bulk crosslinking, compared with only surface crosslinking for the PVDF films. The piezoelectric properties (measured using d33 piezoelectric coefficients and D-E hysteresis loops) were unchanged in the PVDF homopolymer, while the TrFE copolymer exhibited more narrow D-E loops after exposure to either - or VUV-radiation. The more severe damage to the TrFE copolymer in comparison with the PVDF homopolymer after VUV-irradiation is explained by different energy deposition characteristics. The short wavelength, highly energetic photons are undoubtedly absorbed in the surface layers of both polymers, and we propose that while the longer wavelength components of the VUV-radiation are absorbed by the bulk of the TrFE copolymer causing crosslinking, they are transmitted harmlessly in the PVDF homopolymer.
Resumo:
The aim of this study was to evaluate the healing of class III furcation defects following transplantation of autogenous periosteal cells combined with b-tricalcium phosphate (b-TCP). Periosteal cells obtained from Beagle dogs’ periosteum explant cultures, were inoculated onto the surface of b-TCP. Class III furcation defects were created in the mandibular premolars. Three experimental groups were used to test the defects’ healing: group A, b-TCP seeded with periosteal cells were transplanted into the defects; group B, b-TCP alone was used for defect filling; and group C, the defect was without filling materials. Twelve weeks post surgery, the tissue samples were collected for histology, immunohistology and X-ray examination. It was found that both the length of newly formed periodontal ligament and the area of newly formed alveolar bone in group A, were significantly increased compared with both group B and C. Furthermore, both the proportion of newly formed periodontal ligament and newly formed alveolar bone in group A were much higher than those of group B and C. The quantity of cementum and its percentage in the defects (group A) were also significantly higher than those of group C. These results indicate that autogenous periosteal cells combined with b-TCP application can improve periodontal tissue regeneration in class III furcation defects.
The structure and peptisation of alumina prepared from the hydrolysis of trisecbutoxyaluminium (III)
Resumo:
The Bayley Scales of Infant Development, Third Edition (Bayley-III) and Stanford-Binet Intelligence Scale, Fifth Edition (SB5) were administered in a sample of 26 typically developing children (12 males and 14 females) aged 24 – 42 months. Children completed the assessments in two separate sessions, counterbalanced for order of administration. Scores on the two instruments were not significantly related, with the exception of the SB5 Knowledge score, which was moderately correlated with the Language score on the Bayley-III (r = .41, p = 0.04). Despite no other significant correlations, for 22 of the 26 children, scores were very consistent across the two instruments. Implications for test selection are discussed.
Resumo:
The mechanism for the decomposition of hydrotalcite remains unsolved. Controlled rate thermal analysis enables this decomposition pathway to be explored. The thermal decomposition of hydrotalcites with hexacyanoferrite(II) and hexacyanoferrate(III) in the interlayer has been studied using controlled rate thermal analysis technology. X-ray diffraction shows the hydrotalcites studied have a d(003) spacing of 11.1 and 10.9 Å which compares with a d-spacing of 7.9 and 7.98 Å for the hydrotalcite with carbonate or sulphate in the interlayer. Calculations based upon CRTA measurements show that 7 moles of water is lost, proving the formula of hexacyanoferrite(II) intercalated hydrotalcite is Mg6Al2(OH)16[Fe(CN)6]0.5 .7 H2O and for the hexacyanoferrate(III) intercalated hydrotalcite is Mg6Al2(OH)16[Fe(CN)6]0.66 * 9 H2O. Dehydroxylation combined with CN unit loss occurs in three steps between a) 310 and 367°C b) 367 and 390°C and c) between 390 and 428°C for both the hexacyanoferrite(II) and hexacyanoferrate(III) intercalated hydrotalcite.