848 resultados para Wireless Mesh Networks. IEEE 802.11s. Testbeds. Management


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Wireless Mesh Network (WMN - Wireless Mesh Network) IEEE 802.11s standard to become operational it is necessary to configure the parameters that meet the demands of its users, as regards, for example, the frequency channels, the power antennas, IPs addresses, meshID, topology, among others. This configuration can be done via a CLI (Command - Line Interface) or a remote interface provided by the equipment manufacturer, both are not standardized and homogeneous, like black boxes for the developers, a factor that hinders its operation and standardization. The WMN, as a new standard, is still in the testing phase, and tests are necessary to evaluate the performance of Path Discovery Protocol, as in this case of HWMP (Hybrid Wireless Mesh Protocol), which still has many shortcomings. The configuration and test creation in a WMN are not trivial and require a large workload. For these reasons this work presents the AIGA, a Management Integrated Environment for WMN IEEE 802.11s, which aims to manage and perform testbeds for analyzes of new Path Discovery Protocols in a WMN

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-rate low-power consumption and low-cost communication are the key points that lead to the specification of the IEEE 802.15.4 standard. This paper overviews the technical features of the physical layer and the medium access control sublayer mechanisms of the IEEE 802.15.4 protocol that are most relevant for wireless sensor network applications. We also discuss the ability of IEEE 802.15.4 to fulfil the requirements of wireless sensor network applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) have been attracting increasing interests for developing a new generation of embedded systems with great potential for many applications such as surveillance, environment monitoring, emergency medical response and home automation. However, the communication paradigms in WSNs differ from the ones attributed to traditional wireless networks, triggering the need for new communication protocols. In this context, the recently standardised IEEE 802.15.4 protocol presents some potentially interesting features for deployment in wireless sensor network applications, such as power-efficiency, timeliness guarantees and scalability. Nevertheless, when addressing WSN applications with (soft/hard) timing requirements some inherent paradoxes emerge, such as power-efficiency versus timeliness, triggering the need of engineering solutions for an efficient deployment of IEEE 802.15.4 in WSNs. In this technical report, we will explore the most relevant characteristics of the IEEE 802.15.4 protocol for wireless sensor networks and present the most important challenges regarding time-sensitive WSN applications. We also provide some timing performance and analysis of the IEEE 802.15.4 that unveil some directions for resolving the previously mentioned paradoxes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The purpose of this paper is to investigate the use of 802.11e MAC to resolve the transmission control protocol (TCP) unfairness. Design/methodology/approach: The paper shows how a TCP sender may adapt its transmission rate using the number of hops and the standard deviation of recently measured round-trip times to address the TCP unfairness. Findings: Simulation results show that the proposed techniques provide even throughput by providing TCP fairness as the number of hops increases over a wireless mesh network (WMN). Research limitations/implications: Future work will examine the performance of TCP over routing protocols, which use different routing metrics. Other future work is scalability over WMNs. Since scalability is a problem with communication in multi-hop, carrier sense multiple access (CSMA) will be compared with time division multiple access (TDMA) and a hybrid of TDMA and code division multiple access (CDMA) will be designed that works with TCP and other traffic. Finally, to further improve network performance and also increase network capacity of TCP for WMNs, the usage of multiple channels instead of only a single fixed channel will be exploited. Practical implications: By allowing the tuning of the 802.11e MAC parameters that have previously been constant in 802.11 MAC, the paper proposes the usage of 802.11e MAC on a per class basis by collecting the TCP ACK into a single class and a novel congestion control method for TCP over a WMN. The key feature of the proposed TCP algorithm is the detection of congestion by measuring the fluctuation of RTT of the TCP ACK samples via the standard deviation, plus the combined the 802.11e AIFS and CWmin allowing the TCP ACK to be prioritised which allows the TCP ACKs will match the volume of the TCP data packets. While 802.11e MAC provides flexibility and flow/congestion control mechanism, the challenge is to take advantage of these features in 802.11e MAC. Originality/value: With 802.11 MAC not having flexibility and flow/congestion control mechanisms implemented with TCP, these contribute to TCP unfairness with competing flows. © Emerald Group Publishing Limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless Mesh Networks (WMNs) have emerged as a key technology for the next generation of wireless networking. Instead ofbeing another type of ad-hoc networking, WMNs diversify the capabilities of ad-hoc networks. There are many kinds of protocols that work over WMNs, such as IEEE 802.11a/b/g, 802.15 and 802.16. To bring about a high throughput under varying conditions, these protocols have to adapt their transmission rate. While transmission rate is a significant part, only a few algorithms such as Auto Rate Fallback (ARF) or Receiver Based Auto Rate (RBAR) have been published. In this paper we will show MAC, packet loss and physical layer conditions play important role for having good channel condition. Also we perform rate adaption along with multiple packet transmission for better throughput. By allowing for dynamically monitored, multiple packet transmission and adaptation to changes in channel quality by adjusting the packet transmission rates according to certain optimization criteria improvements in performance can be obtained. The proposed method is the detection of channel congestion by measuring the fluctuation of signal to the standard deviation of and the detection of packet loss before channel performance diminishes. We will show that the use of such techniques in WMN can significantly improve performance. The effectiveness of the proposed method is presented in an experimental wireless network testbed via packet-level simulation. Our simulation results show that regardless of the channel condition we were to improve the performance in the throughput.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless Mesh Networks (WMNs) have emerged as a key technology for the next generation of wireless networking. Instead of being another type of ad-hoc networking, WMNs diversify the capabilities of ad-hoc networks. Several protocols that work over WMNs include IEEE 802.11a/b/g, 802.15, 802.16 and LTE-Advanced. To bring about a high throughput under varying conditions, these protocols have to adapt their transmission rate. In this paper, we have proposed a scheme to improve channel conditions by performing rate adaptation along with multiple packet transmission using packet loss and physical layer condition. Dynamic monitoring, multiple packet transmission and adaptation to changes in channel quality by adjusting the packet transmission rates according to certain optimization criteria provided greater throughput. The key feature of the proposed method is the combination of the following two factors: 1) detection of intrinsic channel conditions by measuring the fluctuation of noise to signal ratio via the standard deviation, and 2) the detection of packet loss induced through congestion. We have shown that the use of such techniques in a WMN can significantly improve performance in terms of the packet sending rate. The effectiveness of the proposed method was demonstrated in a simulated wireless network testbed via packet-level simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless Mesh Networks (WMNs) have emerged as a key technology for the next generation of wireless networking. Instead of being another type of ad-hoc networking, WMNs diversify the capabilities of ad-hoc networks. Several protocols that work over WMNs include IEEE 802.11a/b/g, 802.15, 802.16 and LTE-Advanced. To bring about a high throughput under varying conditions, these protocols have to adapt their transmission rate. This paper proposes a scheme to improve channel conditions by performing rate adaptation along with multiple packet transmission using packet loss and physical layer condition. Dynamic monitoring, multiple packet transmission and adaptation to changes in channel quality by adjusting the packet transmission rates according to certain optimization criteria provided greater throughput. The key feature of the proposed method is the combination of the following two factors: 1) detection of intrinsic channel conditions by measuring the fluctuation of noise to signal ratio via the standard deviation, and 2) the detection of packet loss induced through congestion. The authors show that the use of such techniques in a WMN can significantly improve performance in terms of the packet sending rate. The effectiveness of the proposed method was demonstrated in a simulated wireless network testbed via packet-level simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A wireless mesh network is a mesh network implemented over a wireless network system such as wireless LANs. Wireless Mesh Networks(WMNs) are promising for numerous applications such as broadband home networking, enterprise networking, transportation systems, health and medical systems, security surveillance systems, etc. Therefore, it has received considerable attention from both industrial and academic researchers. This dissertation explores schemes for resource management and optimization in WMNs by means of network routing and network coding.^ In this dissertation, we propose three optimization schemes. (1) First, a triple-tier optimization scheme is proposed for load balancing objective. The first tier mechanism achieves long-term routing optimization, and the second tier mechanism, using the optimization results obtained from the first tier mechanism, performs the short-term adaptation to deal with the impact of dynamic channel conditions. A greedy sub-channel allocation algorithm is developed as the third tier optimization scheme to further reduce the congestion level in the network. We conduct thorough theoretical analysis to show the correctness of our design and give the properties of our scheme. (2) Then, a Relay-Aided Network Coding scheme called RANC is proposed to improve the performance gain of network coding by exploiting the physical layer multi-rate capability in WMNs. We conduct rigorous analysis to find the design principles and study the tradeoff in the performance gain of RANC. Based on the analytical results, we provide a practical solution by decomposing the original design problem into two sub-problems, flow partition problem and scheduling problem. (3) Lastly, a joint optimization scheme of the routing in the network layer and network coding-aware scheduling in the MAC layer is introduced. We formulate the network optimization problem and exploit the structure of the problem via dual decomposition. We find that the original problem is composed of two problems, routing problem in the network layer and scheduling problem in the MAC layer. These two sub-problems are coupled through the link capacities. We solve the routing problem by two different adaptive routing algorithms. We then provide a distributed coding-aware scheduling algorithm. According to corresponding experiment results, the proposed schemes can significantly improve network performance.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing usage of wireless networks creates new challenges for wireless access providers. On the one hand, providers want to satisfy the user demands but on the other hand, they try to reduce the operational costs by decreasing the energy consumption. In this paper, we evaluate the trade-off between energy efficiency and quality of experience for a wireless mesh testbed. The results show that by intelligent service control, resources can be better utilized and energy can be saved by reducing the number of active network components. However, care has to be taken because the channel bandwidth varies in wireless networks. In the second part of the paper, we analyze the trade-off between energy efficiency and quality of experience at the end user. The results reveal that a provider's service control measures do not only reduce the operational costs of the network but also bring a second benefit: they help maximize the battery lifetime of the end-user device.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project was developed within the ART-WiSe framework of the IPP-HURRAY group (http://www.hurray.isep.ipp.pt), at the Polytechnic Institute of Porto (http://www.ipp.pt). The ART-WiSe – Architecture for Real-Time communications in Wireless Sensor networks – framework (http://www.hurray.isep.ipp.pt/art-wise) aims at providing new communication architectures and mechanisms to improve the timing performance of Wireless Sensor Networks (WSNs). The architecture is based on a two-tiered protocol structure, relying on existing standard communication protocols, namely IEEE 802.15.4 (Physical and Data Link Layers) and ZigBee (Network and Application Layers) for Tier 1 and IEEE 802.11 for Tier 2, which serves as a high-speed backbone for Tier 1 without energy consumption restrictions. Within this trend, an application test-bed is being developed with the objectives of implementing, assessing and validating the ART-WiSe architecture. Particularly for the ZigBee protocol case; even though there is a strong commercial lobby from the ZigBee Alliance (http://www.zigbee.org), there is neither an open source available to the community for this moment nor publications on its adequateness for larger-scale WSN applications. This project aims at fulfilling these gaps by providing: a deep analysis of the ZigBee Specification, mainly addressing the Network Layer and particularly its routing mechanisms; an identification of the ambiguities and open issues existent in the ZigBee protocol standard; the proposal of solutions to the previously referred problems; an implementation of a subset of the ZigBee Network Layer, namely the association procedure and the tree routing on our technological platform (MICAz motes, TinyOS operating system and nesC programming language) and an experimental evaluation of that routing mechanism for WSNs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Informatik, Diss., 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of QoS parameters to evaluate the quality of service in a mesh network is essential mainly when providing multimedia services. This paper proposes an algorithm for planning wireless mesh networks in order to satisfy some QoS parameters, given a set of test points (TPs) and potential access points (APs). Examples of QoS parameters include: probability of packet loss and mean delay in responding to a request. The proposed algorithm uses a Mathematical Programming model to determine an adequate topology for the network and Monte Carlo simulation to verify whether the QoS parameters are being satisfied. The results obtained show that the proposed algorithm is able to find satisfactory solutions.