977 resultados para Winter sowing
Resumo:
The Central Highlands region has a unique climate that presents both challenges and novel farming systems opportunities for cotton production. We have been re-examining the Emerald climate in a bid to identify opportunities that might enable the production of more consistent cotton yields and quality in what can be a highly variable climate. A detailed climatic analysis identified that spring and early summer is the most optimal period for boll growth and maturation. However, to unlock this potential requires unseasonal winter sowing that is 4 to 6 weeks earlier than the traditional mid-September sowing. Our experiments have sought answers to two questions: i) how much earlier can cotton be sown for reliable crop establishment and high yield; ii) can degradable plastic film mulches minimise the impact of potentially cold temperatures on crop establishment and early vigour. Initial data suggests August sowing offers the potential to grow a high yield at a time of year with reduced risk of cloud and high night temperatures during boll growth. For the past two seasons late winter sowing (with and without film) has resulted in a compact plant with high retention that physiologically matures by the beginning of January. Even with the spectre of replanting cotton in some seasons due to frost in August, early sowing would appear to offer the opportunity for more efficient crop input usage, simplified agronomic management and new crop rotation options during late summer and autumn. This talk will present an overview of results to date.
Resumo:
Com o objetivo de avaliar os efeitos da semeadura no outono/inverno de diferentes espécies: sorgo de cobertura (Sorghum bicolor x Sorghum sudanense 'híbrido Cober Exp'), milheto forrageiro (Pennisetum americanum 'var. BN2'), capim-pé-de-galinha (Eleusine coracana) e braquiária (Brachiaria brizantha) para formação de palha (nas quantidades de 3,0 e 5,5 t ha¹), na emergência de plantas daninhas, foi conduzido experimento no ano agrícola 2003/04, na fazenda Três Marcos, em Uberlândia, MG. Foi mantida uma testemunha como tratamento adicional, sem cobertura com restos vegetais. A composição específica e as densidades populacionais das comunidades infestantes foram influenciadas pelos sistemas de produção de cobertura morta. A emergência das plantas daninhas foi menor nas coberturas de sorgo e braquiária e nos maiores níveis de palha. O número de plântulas emergidas de Bidens pilosa, Amaranthus spp., Commelina benghalensis, Leucas martinicensis e gramíneas foi inibido pelas coberturas, enquanto para Chamaesyce spp. os resíduos contribuíram para incremento na sua emergência.
Resumo:
Foram avaliados 12 híbridos de pepino do tipo japonês em cultivo de verão (duas repetições, 7 plantas/parcela) e 14 em cultivo de outono-inverno (quatro repetições, 5 plantas/parcela), em um delineamento em blocos ao acaso, com o objetivo de avaliar o comportamento dos mesmos sob cultivo protegido nas condições de São Manuel (SP). Somente o híbrido Rensei caracterizou-se por ser ginóico, e os demais (AF-1327, AF-1328, AF-1329, BU-92, Hokuho, Hokushin, Hyuma, KH-705, Natsusuzumi, Nikkey, Summer Green, Top Green, Tsuyataro e Yoshinari) foram monóicos, embora todos partenocárpicos. Os híbridos mais produtivos no cultivo de verão foram o Tsuyataro (25,4 frutos/planta) e o Rensei (25,3 frutos/planta). No cultivo de outono-inverno foram o Nikkey (26,8 frutos comerciais/planta) e Top Green (23,4 frutos comerciais/planta) e os menos produtivos foram o Rensei (16,1 frutos comerciais/planta) e o AF-1328 (17,6 frutos comerciais/planta). em média, obteve-se maior produção no cultivo de outono-inverno.
Resumo:
The sowing of soybean out of the conventional period is an option for the production of seeds with high physiological quality. On the other hand, this fact makes necessary the search for cultivars adapted to new environmental conditions. Therefore, additional research is needed to supply more information to producers related to the choice of the most suited cultivars with regard to high seed quality. This research was conducted in Selvíria, MS, Brazil in which the cultivars FT-2000, FT-Inaê, Embrapa 20 (Doko RC), CAC-1, IAC-17, IAC-18, IAC-19, IAC-8-2, FT-101, FT-109, MT/ BR 45 (Paiaguás), MT/BR 50 (Parecis), MT/BR 52 (Curió), MT/BR 53 (Tucano), MT/BR 47 (Canário), MT/BR 49 (Pioneira), BRSMT Uirapuru, BR Emgopa 314 (Garça Branca), MG/BR 46 (Conquista), FT-Estrela, FT-Cometa, Dourados, JAB-11, BR 9 (Savana), FT-Abyara, Embrapa 30 (Vale do Rio Doce), Embrapa 9 (Bays), Embrapa 31 (Mina), IAC-16; IAS 5, EMGOPA-304, and IAC-Foscarin 31 were studied. These cultivars were sown on June 5, 1998, and evaluated both for agronomic characteristics and the physiological potential of the seeds. The experimental units were arranged in the field according to a randomized complete block design with five replicates. The cultivars more adapted to the climatic conditions were Parecis, Bays, CAC-1, Garça Branca, Paiaguás, Pioneira, and IAC-16. It was concluded that winter sowing should start at the beginning of May, with water supply, since June was found to be too late.
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In Tunisia, broomrape ( Orobanche foetida Poir.) causes major drawbacks especially in faba bean ( Vicia faba L.) Chickpea ( Cicer arietinum L.) suffers little damage compared to faba bean, but with the winter sowing chickpea cultivars, broomrape might become a serious problem for chickpea cultivation. The development of resistant cultivars remains the most efficient way to solve this problem. The behavior of six chickpea genotypes to O. foetida was studied under field natural infestation and artificial inoculation in pots and petri dishes in greenhouse conditions. During the cropping seasons 2010-2011 and 2012-2013 the level of infection was very low. The number of emerged parasites per host plant varied from 0.18 to 0.43 and the incidence from 6.5% to 23%. Among the six tested genotypes, G1, G2, and G4 showed partial resistance to O. foetida with low number and dry weight of emerged parasite and high grain yield compared to the other genotypes, although no significant differences were recorded. In pot experiments, the number and total dry weight of broomrape per plant were lower for G1 and G2 genotypes than the other genotypes. Parasitism does not affect significantly the shoot dry weight and number of pods of these genotypes. The total chlorophyll content was significantly reduced under infestation in all genotypes. In Petri dishes experiments, results showed that percent germination of O. foetida seeds varied from 49% to 65% and does not play a role in the resistance of chickpea genotypes. In contrast, broomrape attachment was lower and slower for the genotypes G1, G2, and G4 than the other genotypes. Resistance in chickpea genotypes was characterized by few parasite attachments on roots and a limited growth of established tubercles. No necrosis of attached tubercles was observed in the different experiments.
Resumo:
Common bean production in Goiás, Brazil is concentrated in the same geographic area, but spread acrossthree distinct growing seasons, namely, wet, dry and winter. In the wet and dry seasons, common beansare grown under rainfed conditions, whereas the winter sowing is fully irrigated. The conventional breed-ing program performs all varietal selection stages solely in the winter season, with rainfed environmentsbeing incorporated in the breeding scheme only through the multi environment trials (METs) wherebasically only yield is recorded. As yield is the result of many interacting processes, it is challengingto determine the events (abiotic or biotic) associated with yield reduction in the rainfed environments(wet and dry seasons). To improve our understanding of rainfed dry bean production so as to produceinformation that can assist breeders in their efforts to develop stress-tolerant, high-yielding germplasm,we characterized environments by integrating weather, soil, crop and management factors using cropsimulation models. Crop simulations based on two commonly grown cultivars (Pérola and BRS Radi-ante) and statistical analyses of simulated yield suggest that both rainfed seasons, wet and dry, can bedivided in two groups of environments: highly favorable environment and favorable environment. Forthe wet and dry seasons, the highly favorable environment represents 44% and 58% of production area,respectively. Across all rainfed environment groups, terminal and/or reproductive drought stress occursin roughly one fourth of the seasons (23.9% for Pérola and 24.7% for Radiante), with drought being mostlimiting in the favorable environment group in the dry TPE. Based on our results, we argue that eventhough drought-tailoring might not be warranted, the common bean breeding program should adapttheir selection practices to the range of stresses occurring in the rainfed TPEs to select genotypes moresuitable for these environments.
Resumo:
Soybean yield is highly affected by sowing period and there are significant productivity losses when sowings are done outward a relatively restricted period in many regions of Brazil. Breeding cultivars less sensitive to photoperiod and to temperature variations is desirable for adaptation to wider sowing period and wider latitude range and also make irrigated soybean cultivation possible during the fall-winter seasons in frost free regions. The possibility of selecting high yielding and stable lines for yield during various sowing periods was studied by analyzing the behavior of 100 non-selected advanced lines (F9 and F10), from each one of all possible biparental crosses involving the genotypes BR85-29009, OCEPAR 8, FT-2, and BR-13. Experiments were set up in a completely randomized design with single-plant hill plots and received supplementary irrigation. Sowing was on Sept 27, Oct 20, Nov 17, and Dec 17 in 1993/94 and Sept 20, Oct 20, Nov 17, and Dec 14 in 1994/95 at Londrina, PR, Brazil. Procedures of regression analysis and minimum variance among planting date means were efficient for selecting stable lines during the four sowing seasons. It was possible to select stable and high yielding genotypes through the four sowing periods in all the crosses. No specific cross was clearly better to produce a greater number of stable genotypes.
Resumo:
The objective of this work was to evaluate the effect on forage yield of sowing winter forage species before and after soybean harvest, at different nitrogen application levels. The experiment was set out in a randomized block design with a strip-split plot arrangement, and three replicates. Sowing methods (18 days before soybean harvest and six days after soybean harvest) were allocated in the main plots, and the combination among forage species (Avena strigosa cv. IAPAR 61 + Lolium multiflorum; A. strigosa cv. Comum + L. multiflorum; A. strigosa cv. Comum + L. multiflorum + Vicia villosa; A. strigosa cv. Comum + L. multiflorum + Raphanus sativus; and L. multiflorum) and nitrogen levels (0, 140, 280 and 420 kg ha-1) in the plots and subplots, respectively. Forage sowing before the soybean harvest made it possible to anticipate first grazing by 14 days, with satisfactory establishment of forage species without affecting forage production. This method permitted a longer grazing period, preventing the need for soil disking, besides allowing the use of no-tillage system. The mixture of forage species enables higher forage yield for pasture in relation to single species pastures, with response to nitrogen fertilization up to 360 kg ha-1.
Resumo:
Lolium rigidum Gaud. is one of the most common weed species in winter cereals in Northeastern Spain. Herbicide resistance has been growing since the mid 90's and exclusive herbicide use is not enough in many cases, so that it is necessary to combine as many control tools as possible. Six field trials have been conducted during the cropping seasons 2001-02, 2002-03 and 2003-04 on winter cereal infested with herbicide resistant L. rigidum in Northeastern Spain testing different cultural control strategies. Sowing delay was conducted at five fields, mouldboard ploughing at four fields, the combination of sowing delay and ploughing at two fields, increasing the cereal sowing density and combined with sowing delay at one field. Sowing delay was confirmed to have an irregular efficacy depending on the L. rigidum emergence during the delay period. In the trials, weed emergence was reduced up to 88% in the best case but there was no effect in two cases. Ploughing had a more constant efficacy and reduced weed emergence between 50 and 80% although stoniness impeded in one occasion a correct soil inversion causing a very low efficacy. Increasing the cereal sowing rate did not reduce the weed population. The combination of the different methods did not increase significantly the individual efficacy, and one method was clearly more effective than the other, depending on the trial. In fields with high L. rigidum density, these methods are not effective enough and need to be combined with other methods, which are discussed in the text.
Resumo:
The forage production in crop-livestock integration is critical both for formation of straw for no tillage planting and food for livestock farm. The experiment was conducted in the autumn/winter of 2009 and 2010, in the city of Selvíria -state of Mato Grosso do Sul -MS, Brazil, at Experimental Station of FEIS/UNESP. The objective was to evaluate the optimal depth for deposition of seeds of two Brachiaria species intercropped with corn with emphasis on grain yield and straw. The experimental design was a randomized block design in a factorial scheme 3 x 3, with four replications. The main treatments were two species of Brachiaria (Urochloa brizantha "Marandú" and Urochloa ruziziensis), which seeds were mixed with corn fertilizer and a control treatment (without intercropping). Secondary treatments consisted of three depths (8; 10 and 16 cm) in the deposition of fertilizer (in the consortium and the control treatments). The intercropping corn with Brachiaria produced similar amounts of straw. The straw total production was higher when intercropped and decreased with depth. The consortium with U. ruziziensis provided higher grain yield of corn in relation to U. brizantha, in 2010. The sowing depth of forages did not affect corn yield.