956 resultados para Wheat -- Genetics


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Six wheat genotypes and their F1 and F2 generations were exposed to the action of Helminthosporium sativum culture filtrates to examine the genetics of hexaploid wheat resistance. The objective was to improve the efficiency of breeding programs by identifying the action and number of genes involved in the resistance. The varied response of the tested genotypes to the culture filtrates allowed division of the genotypes into four groups: resistant, moderately resistant, moderately susceptible and susceptible. This variability was detected in the progeny, suggesting that the parents have distinct genetic constitutions. Additive gene action predominated and genetic gain was shown to be possible through selection. The genetic control of the resistance trait seems to be complex because of the presence of gene interaction and the difficulty of eliminating the environmental effects. The inheritance seems to be oligogenic

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microsatellites or simple sequence repeats (SSRs) are ubiquitous in eukaryotic genomes. Single-locus SSR markers have been developed for a number of species, although there is a major bottleneck in developing SSR markers whereby flanking sequences must be known to design 5'-anchors for polymerase chain reaction (PCR) primers. Inter SSR (ISSR) fingerprinting was developed such that no sequence knowledge was required. Primers based on a repeat sequence, such as (CA)(n), can be made with a degenerate 3'-anchor, such as (CA)(8)RG or (AGC)(6)TY. The resultant PCR reaction amplifies the sequence between two SSRs, yielding a multilocus marker system useful for fingerprinting, diversity analysis and genome mapping. PCR products are radiolabelled with P-32 or P-33 via end-labelling or PCR incorporation, and separated on a polyacrylamide sequencing gel prior to autoradiographic visualisation. A typical reaction yields 20-100 bands per lane depending on the species and primer. We have used ISSR fingerprinting in a number of plant species, and report here some results on two important tropical species, sorghum and banana. Previous investigators have demonstrated that ISSR analysis usually detects a higher level of polymorphism than that detected with restriction fragment length polymorphism (RFLP) or random amplified polymorphic DNA (RAPD) analyses. Our data indicate that this is not a result of greater polymorphism genetically, but rather technical reasons related to the detection methodology used for ISSR analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a significant potential to improve the plant-beneficial effects of root-colonizing pseudomonads by breeding wheat genotypes with a greater capacity to sustain interactions with these bacteria. However, the interaction between pseudomonads and crop plants at the cultivar level, as well as the conditions which favor the accumulation of beneficial microorganisms in the wheat rhizosphere, is largely unknown. Therefore, we characterized the three Swiss winter wheat (Triticum aestivum) cultivars Arina, Zinal, and Cimetta for their ability to accumulate naturally occurring plant-beneficial pseudomonads in the rhizosphere. Cultivar performance was measured also by the ability to select for specific genotypes of 2,4-diacetylphloroglucinol (DAPG) producers in two different soils. Cultivar-specific differences were found; however, these were strongly influenced by the soil type. Denaturing gradient gel electrophoresis (DGGE) analysis of fragments of the DAPG biosynthetic gene phlD amplified from natural Pseudomonas rhizosphere populations revealed that phlD diversity substantially varied between the two soils and that there was a cultivar-specific accumulation of certain phlD genotypes in one soil but not in the other. Furthermore, the three cultivars were tested for their ability to benefit from Pseudomonas inoculants. Interestingly, Arina, which was best protected against Pythium ultimum infection by inoculation with Pseudomonas fluorescens biocontrol strain CHA0, was the cultivar which profited the least from the bacterial inoculant in terms of plant growth promotion in the absence of the pathogen. Knowledge gained of the interactions between wheat cultivars, beneficial pseudomonads, and soil types allows us to optimize cultivar-soil combinations for the promotion of growth through beneficial pseudomonads. Additionally, this information can be implemented by breeders into a new and unique breeding strategy for low-input and organic conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Powdery mildew is an important disease of wheat caused by the obligate biotrophic fungus Blumeria graminis f. sp. tritici. This pathogen invades exclusively epidermal cells after penetrating directly through the cell wall. Because powdery mildew colonizes exclusively epidermal cells, it is of importance not only to identify genes which are activated, but also to monitor tissue specificity of gene activation. Acquired resistance of wheat to powdery mildew can be induced by a previous inoculation with the non-host pathogen B. graminis f. sp. hordei, the causal agent of barley powdery mildew. The establishment of the resistant state is accompanied by the activation of genes. Here we report the tissue-specific cDNA-AFLP analysis and cloning of transcripts accumulating 6 and 24 h after the resistance-inducing inoculation with B. graminis f. sp. hordei. A total of 25,000 fragments estimated to represent about 17,000 transcripts were displayed. Out of these, 141 transcripts, were found to accumulate after Bgh inoculation using microarray hybridization analysis. Forty-four accumulated predominantly in the epidermis whereas 76 transcripts accumulated mostly in mesophyll tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

*This study reconstructs the phylogeography of Aegilops geniculata, an allotetraploid relative of wheat, to discuss the impact of past climate changes and recent human activities (e.g. the early expansion of agriculture) on the genetic diversity of ruderal plant species. *We combined chloroplast DNA (cpDNA) sequencing, analysed using statistical parsimony network, with nonhierarchical K-means clustering of amplified fragment length polymorphism (AFLP) genotyping, to unravel patterns of genetic structure across the native range of Ae. geniculata. The AFLP dataset was further explored by measurement of the regional genetic diversity and the detection of isolation by distance patterns. *Both cpDNA and AFLP suggest an eastern Mediterranean origin of Ae. geniculata. Two lineages have spread independently over northern and southern Mediterranean areas. Northern populations show low genetic diversity but strong phylogeographical structure among the main peninsulas, indicating a major influence of glacial cycles. By contrast, low genetic structuring and a high genetic diversity are detected in southern Mediterranean populations. Finally, we highlight human-mediated dispersal resulting in substantial introgression between resident and migrant populations. *We have shown that the evolutionary trajectories of ruderal plants can be similar to those of wild species, but are interfered by human activities, promoting range expansions through increased long-distance dispersal and the creation of suitable habitats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of Pseudomonas biocontrol agents may be improved by applying mixtures of strains which are complementary in their capacity to suppress plant diseases. Here, we have chosen the combination of Pseudomonas fluorescens CHA0 with another well-characterized biocontrol agent, P. fluorescens Q2-87, as a model to study how these strains affect each other's expression of a biocontrol trait. In both strains, production of the antimicrobial compound 2,4-diacetylphloroglucinol (DAPG) is a crucial factor contributing to the suppression of root diseases. DAPG acts as a signaling compound inducing the expression of its own biosynthetic genes. Experimental setups were developed to investigate whether, when combining strains CHA0 and Q2-87, DAPG excreted by one strain may influence expression of DAPG-biosynthetic genes in the other strain in vitro and on the roots of wheat. DAPG production was monitored by observing the expression of lacZ fused to the biosynthetic gene phlA of the respective strain. Dual-culture assays in which the two strains were grown in liquid medium physically separated by a membrane revealed that Q2-87 but not its DAPG-negative mutant Q2-87::Tn5-1 strongly induced phlA expression in a DeltaphlA mutant of strain CHA0. In the same way, phlA expression in a Q2-87 background was induced by DAPG produced by CHA0. When coinoculated onto the roots of wheat seedlings grown under gnotobiotic conditions, strains Q2-87 and CHA0, but not their respective DAPG-negative mutants, were able to enhance phlA expression in each other. In summary, we have established that two nonrelated pseudomonads may stimulate each other in the expression of an antimicrobial compound important for biocontrol. This interpopulation communication occurs in the rhizosphere, i.e., at the site of pathogen inhibition, and is mediated by the antimicrobial compound itself acting as a signal exchanged between the two pseudomonads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phytotoxic pathogenicity factor fusaric acid (FA) represses the production of 2,4-diacetylphloroglucinol (DAPG), a key factor in the antimicrobial activity of the biocontrol strain Pseudomonas fluorescens CHA0. FA production by 12 Fusarium oxysporum strains varied substantially. We measured the effect of FA production on expression of the phlACBDE biosynthetic operon of strain CHA0 in culture media and in the wheat rhizosphere by using a translational phlA'-'lacZ fusion. Only FA-producing F. oxysporum strains could suppress DAPG production in strain CHA0, and the FA concentration was strongly correlated with the degree of phlA repression. The repressing effect of FA on phlA'-'lacZ expression was abolished in a mutant that lacked the DAPG pathway-specific repressor PhlF. One FA-producing strain (798) and one nonproducing strain (242) of F. oxysporum were tested for their influence on phlA expression in CHA0 in the rhizosphere of wheat in a gnotobiotic system containing a sand and clay mineral-based artificial soil. F. oxysporum strain 798 (FA(+)) repressed phlA expression in CHA0 significantly, whereas strain 242 (FA(-)) did not. In the phlF mutant CHA638, phlA expression was not altered by the presence of either F. oxysporum strain 242 or 798. phlA expression levels were seven to eight times higher in strain CHA638 than in the wild-type CHA0, indicating that PhlF limits phlA expression in the wheat rhizosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to determine the in vitro behavior of Brazilian triticale, 16 triticale genotypes, and three wheat genotypes used as checks, were sown in June 1994. The explants used were immature embryos. In addition to the genotype tests, two culture media for callus induction were also evaluated, i.e., MS (Murashige and Skoog, Physiol. Plant. 15: 473-497, 1962) medium containing 2.0 mg 2,4D/l, and MS medium containing 4.0 mg 2,4D/l. The plant regeneration protocol used was the one employed at the Laboratório de Cultura de Tecidos, Departamento de Plantas de Lavoura, Universidade Federal do Rio Grande do Sul, for wheat. Differences in plant regeneration were observed both among triticale and wheat genotypes, with triticale usually showing better regeneration than wheat. No differences were observed between the callus induction media.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examined the chromosome set of the aphid species Sitobion avenae, Schizaphis graminum and Methopolophium dirhodum by means of conventional staining and C, NOR, AluI and HaeIII banding methods. These species are considered important pests to several plants of economic interest in Brazil. No variation was observed in the number of chromosomes of S. avenae, whereas there was intraspecific variation in the other two species. Interspecific differences in the response to the banding treatments were observed. Whereas these techniques allowed the identification of several S. graminum chromosome pairs, only the AluI treatment was capable of inducing differential staining in the M. dirhodum chromosomes and no clear patterns emerged when the S. avenae preparations were treated

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article discusses, from the standpoint of cellular biology, the deterministic and indeterministic androgenesis theories. The role of the vacuole and of various types of stresses on deviation of the microspore from normal development and the point where androgenetic competence is acquired are examined. Based on extensive literature review and data on wheat studies from our laboratory, a model for androgenetic capacity of pollen grain is proposed. A two point deterministic model for in vitro androgenesis is our proposal for acquisition of androgenetic potential of the pollen grain: the first switch point would be early meiosis and the second switch point the uninucleate pollen stage, because the elimination of cytoplasmatic sporophytic determinants takes place at those two strategic moments. Any abnormality in this process allowing the maintenance of sporophytic informational molecules results in the absence of establishment of a gametophytic program, allowing the reactivation of the embryogenic process

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bread-making quality is one of the most important targets in the genetic improvement of wheat. Although extensive analyses of quality traits such as farinography, sodium dodecyl sulfate (SDS) sedimentation, alveography, and baking are made in breeding programs, these analyses require high amounts of seeds which are obtained only in late generations. In this experiment the statistical correlations between the high molecular weight subunit of glutenin and bread-making quality measured by alveograph, farinograph and SDS sedimentation were evaluated. Seventeen wheat genotypes were grown under the same conditions, each producing about 1 kg of seeds for the evaluations. The high molecular weight (HMW) glutenin subunits were analyzed by SDS-PAGE. Statistical correlations were highly significant between HMW glutenin subunits and alveograph and SDS sedimentation. These results indicate the possibility of manipulating major genes for wheat seed quality by coupling traditional breeding with non-destructive single seed analysis. Only half seed is necessary to perform the SDS-PAGE analysis. Therefore, the other half seed can be planted to generate the progeny. Seed yield and SDS sedimentation were statistically correlated, indicating the possibility of simultaneous selection for both traits

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study was conducted in the Department of Plant Breeding and Genetics,Sindh Agriculture University, Tandojam, Pakistan during the year 2009. Sixteen spring wheat cultivars (Triticum aestivum L.) were screened under osmotic stress with three treatments i.e. control-no PEG (polyethylene glycol), 15 percent and 25 percent PEG-6000 solution. The analysis of variance indicated significant differences among treatments for all seedling traits except seed germination percentage. Varieties also differed significantly in germination percentage, coleoptile length, shoot root length, shoot weight, root/shoot ratio and seed vigour index. However, shoot and root weights were non-significant. Significant interactions revealed that cultivars responded variably to osmotic stress treatments; hence provided better opportunity to select drought tolerant cultivars at seedling growth stages. The relative decrease over averages due to osmotic stress was 0.8 percent in seed germination, 53 percent in coleoptile length 62.9 percent in shoot length, 74.4 percent in root length, 50.6 percent in shoot weight, 45.1 percent in root weight, 30.2 percent in root/shoot ratio and 68.5 percent in seed vigour index. However, relative decrease of individual variety for various seedling traits could be more meaningful which indicated that cultivar TD-1 showed no reduction in coleoptile length, while minimum decline was noted in Anmol. For shoot length, cultivar Sarsabz expressed minimum reduction followed by Anmol. However, cultivars Anmol, Moomal, Inqalab-91, and Pavan gave almost equally lower reductions for root length suggesting their higher stress tolerance. In other words, cultivars Anmol, Moomal, Inqalab-91, Sarsabz, TD-1, ZA-77 and Pavan had relatively longer coleoptiles, shoots and roots, and were regarded as drought tolerant. Correlation coefficients among seedlings traits were significant and positive for all traits except germination percentage which had no significant correlation with any of other trait. The results indicated that increase in one trait may cause simultaneous increase in other traits; hence selection for any of these seedling attributes will lead to develop drought tolerant wheat cultivars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The low-molecular-weight (LMW) glutenin subunits are components of the highly cross-linked glutenin polymers that confer viscoelastic properties to gluten and dough. They have both quantitative and qualitative effects on dough quality that may relate to differences in their ability to form the inter-chain disulphide bonds that stabilise the polymers. In order to determine the relationship between dough quality and the amounts and properties of the LMW subunits, we have transformed the pasta wheat cultivars Svevo and Ofanto with three genes encoding proteins, which differ in their numbers or positions of cysteine residues. The transgenes were delivered under control of the high-molecular-weight (HMW) subunit 1Dx5 gene promoter and terminator regions, and the encoded proteins were C-terminally tagged by the introduction of the c-myc epitope. Stable transformants were obtained with both cultivars, and the use of a specific antibody to the c-myc epitope tag allowed the transgene products to be readily detected in the complex mixture of LMW subunits. A range of transgene expression levels was observed. The addition of the epitope tag did not compromise the correct folding of the trangenic subunits and their incorporation into the glutenin polymers. Our results demonstrate that the ability to specifically epitope-tag LMW glutenin transgenes can greatly assist in the elucidation of their individual contributions to the functionality of the complex gluten system.