161 resultados para Waterway
Resumo:
Victorians feel a strong connection to their local waterways and most have a good grasp of river health issues. The My Victorian Waterway report analyses how Victorians interact with their local waterways including rivers, lakes and estuaries. The report is based on the results of a survey completed by more than 7,000 Victorians who answered questions about how they use and care for their local waterways as well as their knowledge of river health issues and aspirations for the future of our waterways.
Resumo:
The World Health Organization recommends that the majority of water monitoring laboratories in the world should test for E. coli daily since thermotolerant coliforms and E. coli are key indicators for risk assessment of recreational waters. Recently, we developed a new SNP method for typing E. coli strains, by which human-specific genotypes were identified. Here, we report the presence of these previously described specific SNP profiles in environmental water, sourced from the Coomera River, located on South East Queensland, Australia, over a period of two years. This study tested for the presence of human-specific E. coli to ascertain whether hydrologic and anthropogenic activity plays a key role in the pollution of the investigated watershed or whether the pollution is from other sources. We found six human-specific SNP profiles and one animal-specific SNP profile consistently across sampling sites and times. We have demonstrated that our SNP genotyping method is able to rapidly identify and characterise human- and animal-specific E. coli isolates in water sources.
Resumo:
BACKGROUND: Enterococcus faecalis and Enterococcus faecium are associated with faecal pollution of water, linked to swimmer-associated gastroenteritis and demonstrate a wide range of antibiotic resistance. The Coomera River is a main water source for the Pimpama-Coomera watershed and is located in South East Queensland, Australia, which is used intensively for agriculture and recreational purposes. This study investigated the diversity of E. faecalis and E. faecium using Single Nucleotide Polymorphisms (SNPs) and associated antibiotic resistance profiles. RESULTS: Total enterococcal counts (cfu/ml) for three/six sampling sites were above the United States Environmental Protection Agency (USEPA) recommended level during rainfall periods and fall into categories B and C of the Australian National Health and Medical Research Council (NHMRC) guidelines (with a 1-10% gastrointestinal illness risk). E. faecalis and E. faecium isolates were grouped into 29 and 23 SNP profiles (validated by MLST analysis) respectively. This study showed the high diversity of E. faecalis and E. faecium over a period of two years and both human-related and human-specific SNP profiles were identified. 81.8% of E. faecalis and 70.21% of E. faecium SNP profiles were associated with genotypic and phenotypic antibiotic resistance. Gentamicin resistance was higher in E. faecalis (47% resistant) and harboured the aac(6')-aph(2') gene. Ciprofloxacin resistance was more common in E. faecium (12.7% resistant) and gyrA gene mutations were detected in these isolates. Tetracycline resistance was less common in both species while tet(L) and tet(M) genes were more prevalent. Ampicillin resistance was only found in E. faecium isolates with mutations in the pbp5 gene. Vancomycin resistance was not detected in any of the isolates. We found that antibiotic resistance profiles further sub-divided the SNP profiles of both E. faecalis and E. faecium. CONCLUSIONS: The distribution of E. faecalis and E. faecium genotypes is highly diverse in the Coomera River. The SNP genotyping method is rapid and robust and can be applied to study the diversity of E. faecalis and E. faecium in waterways. It can also be used to test for human-related and human-specific enterococci in water. The resolving power can be increased by including antibiotic-resistant profiles which can be used as a possible source tracking tool. This warrants further investigation.
Resumo:
A depth-integrated two-dimensional numerical model of current, salinity and sediment transport was proposed and calibrated by the observation data in the Yangtze River Estuary. It was then applied to investigate the flow and sediment ratio of the navigati
Resumo:
Boat wakes in the Atlantic Intracoastal Waterway (AIWW) of North Carolina occur in environments not normally subjected to (wind) wave events, making sections of AIWW potentially vulnerable to extreme wave events generated by boat wakes. The Snow’s Cut area that links the Cape Fear River to the AIWW is an area identified by the Wilmington District of the U.S. Army Corps of Engineers as having significant erosion issues; it was hypothesized that this erosion could be being exacerbated by boat wakes. We compared the boat wakes for six combinations of boat length and speed with the top 5% wind events. We also computed the benthic shear stress associated with boat wakes and whether sediment would move (erode) under those conditions. Finally, we compared the transit time across Snow’s Cut for each speed. We focused on two size classes of V-hulled boats (7 and 16m) representative of AIWW traffic and on three boat speeds (3, 10 and 20 knots). We found that at 10 knots when the boat was plowing and not yet on plane, boat wake height and potential erosion was greatest. Wakes and forecast erosion were slightly mitigated at higher, planing speeds. Vessel speeds greater than 7 knots were forecast to generate wakes and sediment movement zones greatly exceeding that arising from natural wind events. We posit that vessels larger than 7m in length transiting Snow’s Cut (and likely many other fetch-restricted areas of the AIWW) frequently generate wakes of heights that result in sediment movement over large extents of the AIWW nearshore area, substantially in exceedance of natural wind wave events. If the speed, particularly of large V-hulled vessels (here represented by the 16m length class), were reduced to pre-plowing levels (~ 7 knots down from 20), transit times for Snow’s Cut would be increased approximately 10 minutes but based on our simulations would likely substantially reduce the creation of erosion-generating boat wakes. It is likely that boat wakes significantly exceed wind wave background for much of the AIWW and similar analyses may be useful in identifying management options.
Resumo:
In order to examine the effectiveness of engineering protection against localized scour in front of the south groin-group of the Yangtze Estuary Waterway Improvement Project, Phase I, an undistorted physical model on a geometric scale of 1:250 is built in this study, covering two groins and their adacent estuarine areas. By use of rinsing fix-bed model as well as localized mobile-bed model the experiment is undertaken under bi-directional steady flow. According to the experimental results, waterway dredging leads to the increase in steram velocity, the increase being larger during the ebb than during the flood. Construction of the upstream groin has some influence on the flow patterns near the downstream groin. Localized scour in front of the groin-heads is controlled mainly by ebb flow. In the case of a riverbed composed entirely of silt, the depths of localized scour in front of the two groin-heads are 27 m and 29 m, respectively. In reality, the underneath sediment of the prototype riverbed is clay whose threshold velocity is much higher than the stream velocity in the Yangtze Estuary; therefore, the depths of localized scour will not be much larger than the thickness of the silt layer, i. e. 7.4 m and 4.7 m, respectively. The designed aprons covering the riverbed in fron of the groin-heads are very effective in scour control. Aprons of slightly smaller size can also fulfill the task of protection, but the area of localized scour increases significantly.
Resumo:
Sediment contaminants were monitored in Milford Haven Waterway (MHW) since 1978 (hydrocarbons) and 1982 (metals), with the aim of providing surveillance of environmental quality in one of the UK’s busiest oil and gas ports. This aim is particularly important during and after large-scale investment in liquefied natural gas (LNG) facilities. However, methods inevitably have changed over the years, compounding the difficulties of coordinating sampling and analytical programmes. After a review by the MHW Environmental Surveillance Group (MHWESG), sediment hydrocarbon chemistry was investigated in detail in 2010. Natural Resources Wales (NRW) contributed their MHW data for 2007 and 2012, collected to assess the condition of the Special Area of Conservation (SAC) designated under the European Union Habitats Directive. Datasets during 2007-2012 have thus been more comparable. The results showed conclusively that a MHW-wide peak in concentrations of sediment polycyclic aromatic hydrocarbons (PAHs), metals and other contaminants occurred in late 2007. This was corroborated by independent annual monitoring at one centrally-located station with peaks in early 2008 and 2011. The spatial and temporal patterns of recovery from the 2007 peak, shown by MHW-wide surveys in 2010 and 2012, indicate several probable causes of contaminant trends, as follows: atmospheric deposition, catchment runoff, sediment resuspension from dredging, and construction of two LNG terminals and a power station. Adverse biological effects predictable in 2007 using international sediment quality guidelines, were independently tested by data from monitoring schemes of more than a decade duration in MHW (starfish, limpets), and in the wider SAC (grey seals). Although not proving cause and effect, many of these potential biological receptors showed a simultaneous negative response to the elevated 2007 contamination following intense dredging activity in 2006. Wetland bird counts were typically at a peak in the winter of 2005-2006 previous to peak dredging. In the following winter 2006-2007, shelduck in Pembroke River showed their lowest winter count, and spring 2007 was the largest ever drop in numbers of broods across MHW between successive breeding seasons. Wigeon counts in Pembroke River were again low in late 2012 after further dredging nearby. These results are strongly supported by PAH data reported previously from invertebrate bioaccumulation studies in MHW 2007-2010, themselves closely reflecting sediment
Resumo:
Mining and metallurgical industries are the most responsible for heavy metal contamination. These contaminants are often associated to poor management strategies and the lack of suitable containment areas. This is the case of one of the largest metal alloy producers in the São Francisco river basin, in Minas Gerais state, Brazil. During operation, the tailings of this activity have been accumulated in the surrounding area, leading to heavy metal contamination (Mn, Cu, Zn, Ni, Pb, Cd, Cr and As), much above the critical levels, which accumulate in the sediments of the nearby waterways, in the soils of the drainage area, and in the water column. In this work we are going to discuss both the contamination level and its extent in the Consciência river, a small tributary of the São Francisco river, the longest river entirely Brazilian, by analyzing the geochemistry and mineralogy of the accumulated sediments. It will be also discuss the reclamation strategies of this site and the impact on the environment.
Resumo:
Waterways are one of the oldest systems for the transportation of cargo and continue to play a vital role in the economies of some countries. Due to societal change, climate change and the ageing of assets, the conditions influencing the effective functioning of these systems seem to be changing. These changing conditions require measures to renew, adapt or renovate these waterway systems. However, measures with the sole aim of improving navigation conditions have encountered resistance, as the general public, and stakeholders in particular, value these waters in many more ways than navigation alone. Therefore, a more inclusive, integrated approach is required, rather than a sectoral one. Addressing these contemporary challenges requires a shift in the traditional waterway authorities' regimes. The aim of this study is to identify elements in the institutional setting where obstacles and opportunities for a more inclusive approach can be found. Two major waterway systems, the American and the Dutch, have been analyzed using the Institutional Analysis and Development framework to reveal those obstacles and opportunities. The results show that horizontal coordination and a low pay-off for an inclusive approach is particularly problematic. The American case also reveals a promising aspect – mandatory local co-funding for federal navigation projects acts as a stimulus for broad stakeholder involvement. Improving horizontal coordination and seizing opportunities for multifunctional development can open pathways to optimize the value of waterway systems for society.
Resumo:
Industrial pollutants, consisting of heavy metals, petroleum residues, petrochemicals, and a wide spectrum of pesticides, enter the marine environment on a massive scale and pose a very serious threat to all forms of aquatic life. Although, earlier, efforts were directed towards the identification of pollutants and their major sources, because of a growing apprehension about the potential harm that pesticides can inflict upon various aquatic fauna and flora, research on fundamental and applied aspects of pesticides in the aquatic environment has mushroomed to a point where it has become difficult to even keep track of the current advances and developments. The Cochin Estuarine System (CES), adjoining the Greater Cochin area, receives considerable amounts of domestic sewage, urban wastes, agricultural runoff as well as effluent from the industrial units spread all along its shores. Since preliminary investigations revealed that the most prominent of organic pollutants discharged to these estuarine waters were the pesticides, the present study was designed to analyse the temporal and spatial distribution profile of some of the more toxic, persistent pesticides ——— organochlorines such as DDT and their metabolites; HCH-isomers; a cyclodiene compound," Endosulfan and a widely distributed, easily degradable, organophosphorus compound, Malathion, besides investigating their sorptional and toxicological characteristics. Although, there were indications of widespread contamination of various regions of the CBS with DDT, HCH-isomers etc., due to inadequacies of the monitoring programmes and due to a glaring void of baseline data the causative factors could not identified authentically. Therefore, seasonal and spatial distributions of some of the more commonly used pesticides in the CES were monitored systematically, (employing Gas Chromatographic techniques) and the results are analysed.
Resumo:
Basis for the economic efficiency of international supply chains rests on the efficiency of multimodal transport chains. Materials and products are transported along the edges of transport networks with the forwarder endeavouring to maximize the transport efficiency by using the effects of scale along the edges. The network nodes provide the means to have the goods transferred between the means of transport. Whilst purely economic criteria were initially the driving force for a change in the means of transport, ecological requirements are now becoming ever more relevant. The transportation chains should not only be economically presentable but also it makes sense for them to have a “green footprint”. In this context the following considerations will deal with the transfer processes within the network nodes, especially those within inland and feeder terminals. Replies are to be given to the questions as to how far the choice of the crane primary drive has an impact on energy consumption and environmental compatibility of handling the goods and which additional benefit does the recuperation of engrained energies bring during the handling process.
Resumo:
v.36:no.8(1957)