983 resultados para Visual programming languages


Relevância:

100.00% 100.00%

Publicador:

Resumo:

É do conhecimento geral de que, hoje em dia, a tecnologia evolui rapidamente. São criadas novas arquitecturas para resolver determinadas limitações ou problemas. Por vezes, essa evolução é pacífica e não requer necessidade de adaptação e, por outras, essa evolução pode Implicar mudanças. As linguagens de programação são, desde sempre, o principal elo de comunicação entre o programador e o computador. Novas linguagens continuam a aparecer e outras estão sempre em desenvolvimento para se adaptarem a novos conceitos e paradigmas. Isto requer um esforço extra para o programador, que tem de estar sempre atento a estas mudanças. A Programação Visual pode ser uma solução para este problema. Exprimir funções como módulos que recebem determinado Input e retomam determinado output poderá ajudar os programadores espalhados pelo mundo, através da possibilidade de lhes dar uma margem para se abstraírem de pormenores de baixo nível relacionados com uma arquitectura específica. Esta tese não só mostra como combinar as capacidades do CeII/B.E. (que tem uma arquitectura multi­processador heterogénea) com o OpenDX (que tem um ambiente de programação visual), como também demonstra que tal pode ser feito sem grande perda de performance. ABSTRACT; lt is known that nowadays technology develops really fast. New architectures are created ln order to provide new solutions for different technology limitations and problems. Sometimes, this evolution is pacific and there is no need to adapt to new technologies, but things also may require a change every once ln a while. Programming languages have always been the communication bridge between the programmer and the computer. New ones keep coming and other ones keep improving ln order to adapt to new concepts and paradigms. This requires an extra-effort for the programmer, who always needs to be aware of these changes. Visual Programming may be a solution to this problem. Expressing functions as module boxes which receive determined Input and return determined output may help programmers across the world by giving them the possibility to abstract from specific low-level hardware issues. This thesis not only shows how the CeII/B.E. (which has a heterogeneous multi-core architecture) capabilities can be combined with OpenDX (which has a visual programming environment), but also demonstrates that lt can be done without losing much performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vishnu is a tool for XSLT visual programming in Eclipse - a popular and extensible integrated development environment. Rather than writing the XSLT transformations, the programmer loads or edits two document instances, a source document and its corresponding target document, and pairs texts between then by drawing lines over the documents. This form of XSLT programming is intended for simple transformations between related document types, such as HTML formatting or conversion among similar formats. Complex XSLT programs involving, for instance, recursive templates or second order transformations are out of the scope of Vishnu. We present the architecture of Vishnu composed by a graphical editor and a programming engine. The editor is an Eclipse plug-in where the programmer loads and edits document examples and pairs their content using graphical primitives. The programming engine receives the data collected by the editor and produces an XSLT program. The design of the engine and the process of creation of an XSLT program from examples are also detailed. It starts with the generation of an initial transformation that maps source document to the target document. This transformation is fed to a rewrite process where each step produces a refined version of the transformation. Finally, the transformation is simplified before being presented to the programmer for further editing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is widely accepted that solving programming exercises is fundamental to learn how to program. Nevertheless, solving exercises is only effective if students receive an assessment on their work. An exercise solved wrong will consolidate a false belief, and without feedback many students will not be able to overcome their difficulties. However, creating, managing and accessing a large number of exercises, covering all the points in the curricula of a programming course, in classes with large number of students, can be a daunting task without the appropriated tools working in unison. This involves a diversity of tools, from the environments where programs are coded, to automatic program evaluators providing feedback on the attempts of students, passing through the authoring, management and sequencing of programming exercises as learning objects. We believe that the integration of these tools will have a great impact in acquiring programming skills. Our research objective is to manage and coordinate a network of eLearning systems where students can solve computer programming exercises. Networks of this kind include systems such as learning management systems (LMS), evaluation engines (EE), learning objects repositories (LOR) and exercise resolution environments (ERE). Our strategy to achieve the interoperability among these tools is based on a shared definition of programming exercise as a Learning Object (LO).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP 2015). 7 to 9, Apr, 2015. Singapure, Singapore.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A programming style can be seen as a particular model of shaping thought or a special way of codifying language to solve a problem. An adaptive device is made up of an underlying formalism, for instance, an automaton, a grammar, a decision tree, etc., and an adaptive mechanism, responsible for providing features for self-modification. Adaptive languages are obtained by using some programming language as the device’s underlying formalism. The conception of such languages calls for a new programming style, since the application of adaptive technology in the field of programming languages suggests a new way of thinking. Adaptive languages have the basic feature of allowing the expression of programs which self-modifying through adaptive actions at runtime. With the adaptive style, programming language codes can be structured in such a way that the codified program therein modifies or adapts itself towards the needs of the problem. The adaptive programming style may be a feasible alternate way to obtain self-modifying consistent codes, which allow its use in modern applications for self-modifying code.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adaptive devices show the characteristic of dynamically change themselves in response to input stimuli with no interference of external agents. Occasional changes in behaviour are immediately detected by the devices, which right away react spontaneously to them. Chronologically such devices derived from researches in the field of formal languages and automata. However, formalism spurred applications in several other fields. Based on the operation of adaptive automata, the elementary ideas generanting programming adaptive languages are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interactive theorem provers are tools designed for the certification of formal proofs developed by means of man-machine collaboration. Formal proofs obtained in this way cover a large variety of logical theories, ranging from the branches of mainstream mathematics, to the field of software verification. The border between these two worlds is marked by results in theoretical computer science and proofs related to the metatheory of programming languages. This last field, which is an obvious application of interactive theorem proving, poses nonetheless a serious challenge to the users of such tools, due both to the particularly structured way in which these proofs are constructed, and to difficulties related to the management of notions typical of programming languages like variable binding. This thesis is composed of two parts, discussing our experience in the development of the Matita interactive theorem prover and its use in the mechanization of the metatheory of programming languages. More specifically, part I covers: - the results of our effort in providing a better framework for the development of tactics for Matita, in order to make their implementation and debugging easier, also resulting in a much clearer code; - a discussion of the implementation of two tactics, providing infrastructure for the unification of constructor forms and the inversion of inductive predicates; we point out interactions between induction and inversion and provide an advancement over the state of the art. In the second part of the thesis, we focus on aspects related to the formalization of programming languages. We describe two works of ours: - a discussion of basic issues we encountered in our formalizations of part 1A of the Poplmark challenge, where we apply the extended inversion principles we implemented for Matita; - a formalization of an algebraic logical framework, posing more complex challenges, including multiple binding and a form of hereditary substitution; this work adopts, for the encoding of binding, an extension of Masahiko Sato's canonical locally named representation we designed during our visit to the Laboratory for Foundations of Computer Science at the University of Edinburgh, under the supervision of Randy Pollack.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mainstream hardware is becoming parallel, heterogeneous, and distributed on every desk, every home and in every pocket. As a consequence, in the last years software is having an epochal turn toward concurrency, distribution, interaction which is pushed by the evolution of hardware architectures and the growing of network availability. This calls for introducing further abstraction layers on top of those provided by classical mainstream programming paradigms, to tackle more effectively the new complexities that developers have to face in everyday programming. A convergence it is recognizable in the mainstream toward the adoption of the actor paradigm as a mean to unite object-oriented programming and concurrency. Nevertheless, we argue that the actor paradigm can only be considered a good starting point to provide a more comprehensive response to such a fundamental and radical change in software development. Accordingly, the main objective of this thesis is to propose Agent-Oriented Programming (AOP) as a high-level general purpose programming paradigm, natural evolution of actors and objects, introducing a further level of human-inspired concepts for programming software systems, meant to simplify the design and programming of concurrent, distributed, reactive/interactive programs. To this end, in the dissertation first we construct the required background by studying the state-of-the-art of both actor-oriented and agent-oriented programming, and then we focus on the engineering of integrated programming technologies for developing agent-based systems in their classical application domains: artificial intelligence and distributed artificial intelligence. Then, we shift the perspective moving from the development of intelligent software systems, toward general purpose software development. Using the expertise maturated during the phase of background construction, we introduce a general-purpose programming language named simpAL, which founds its roots on general principles and practices of software development, and at the same time provides an agent-oriented level of abstraction for the engineering of general purpose software systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (M.S.)--University of Illinois at Urbana-Champaign.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"UIUCDCS-R-74-652"

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"UILU-ENG 77 1710."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (M.S.)--University of Illinois at Urbana-Champaign.