294 resultados para Vermiculita expandida


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several problems related to the loss of hydraulic seal in oilwells, causing gas migration and/or contamination of the production zone by water, have been reported. The loss of the hydraulic seal is a consequence of cracks which can be occasioned either by the invasion of gas during the wait on cement or by the expansion of the casing causing the fracture of the cement sheath. In case of the pressure of the formation is higher than the pressure in the annulus, gas can migrate into the slurry and form microannulus, which are channels where gas migrates after the cement is set. Cracks can be also occasioned by the fracture of the cement sheath when it does not withstand the thermal and dynamic loads. In reservoirs where the oil is heavy, steam water injection operation is required in order to get the oil flowing. This operation increases the temperature of the casing, and then it expands and causes the fracture of the cement sheath in the annulus. When the failures on the cement are detected, remedial cementing is required, which raise costs caused by the interventions. Once the use of cement in the construction civil sector is older than its use in the petroleum sector, it is common to bring technologies and solutions from the civil construction and apply them on the petroleum area. In this context, vermiculite, a mineral-clay widely encountered in Brazil, has been used, on its exfoliated form, in the civil construction, especially on the manufacture of lights and fireproof concretes with excellent thermal and acoustical properties. It has already been reported in scientific journals, studies of the addition of exfoliated vermiculite in Portland cements revealing good properties related to oilwell cementing operations. Thus, this study aimed to study the rheological behavior, thickening time, stability and compressive strength of the slurries made of Portland cement and exfoliated vermiculite in 5 different compositions, at room temperature and heated. The results showed that the compressive strength decreased with the addition of exfoliated vermiculite, however the values are still allowed for oiwell cementing operations. The thickening time of the slurry with no exfoliated vermiculite was 120 min and the thickening time of the slurry with 12 % of exfoliated vermiculite was 98 min. The stability and the rheological behavior of the slurries revealed that the exfoliated vermiculite absorbed water and therefore increased the viscosity of the slurries, even though increasing the factor cement-water. The stability experiment carried out at 133 ºF showed that, there was neither sedimentation nor reduction of the volume of the cement for the slurry with 12 % of exfoliated vermiculite. Thus, the addition of exfoliated vermiculite accelerates the set time of the cement and gives it a small shrinkage during the wait on cement, which are important to prevent gas migration

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The northeastern region of Brazil has a large number of wells producing oil using a method of secondary recovery steam injection, since the oil produced in this region is essentially viscous. This recovery method puts the cement / coating on thermal cycling, due to the difference in coefficient of thermal expansion between cement and metal coating causes the appearance of cracks at this interface, allowing the passage of the annular fluid, which is associated with serious risk socioeconomic and environmental. In view of these cracks, a correction operation is required, resulting in more costs and temporary halt of production of the well. Alternatively, the oil industry has developed technology for adding new materials in cement pastes, oil well, providing high ductility and low density in order to withstand the thermo-mechanical loads generated by the injection of water vapor. In this context, vermiculite, a clay mineral found in abundance in Brazil has been applied in its expanded form in the construction industry for the manufacture of lightweight concrete with excellent insulation and noise due to its high melting point and the presence of air in their layers lamellar. Therefore, the vermiculite is used for the purpose of providing low-density cement paste and withstand high temperatures caused by steam injection. Thus, the present study compared the default folder containing cement and water with the folders with 6%, 8% and 10% vermiculite micron conducting tests of free water, rheology and compressive strength where it obtained the concentration of 8 % with the best results. Subsequently, the selected concentration, was compared with the results recommended by the API standard tests of filtered and stability. And finally, analyzed the results from tests of specific gravity and time of thickening. Before the study we were able to make a folder with a low density that can be used in cementing oil well in order to withstand the thermo-mechanical loads generated by steam injection

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gas migration during the cementing of wells is one of the main problems of oil wells engineering. Its occurrence can cause severe problems since shortly to loss of control of the well after cementation. Recently, 20/04/2010 In an accident of major proportions in the Gulf of Mexico, among other factors, faulty cementing operation provided the gas migration, causing the accident, in which 11 people died and 17 were injured occurred. Besides the serious consequences that can be caused by gas migration, remediation of the problem, which is made by injecting cement in damaged areas, usually involves additional costs and is not always effective. Therefore, preventing gas migration to be preferred. Some methods are used to prevent the migration of the pressurized gas as the annular space, application of pressure pulses, reducing the height of the cement column compressible cement pastes of low permeability, pastes and to control free filtered water, and binders of thixotropic cement expandable and flexible. Thus, the cement pastes used to prevent gas migration must meet the maximum these methods. Thus, this study aimed to formulate a cement paste to prevent gas migration, using the expanded vermiculite, and evaluate the behavior of the folder trials necessary for use in oil wells. Free water content, rheological properties, compressive strength, loss of liquid phase sedimentation of solids, specific weight, thickening time and gas migration: The following tests were performed. The results show that meets the specifications paste formulated for use in oil wells and the use of expanded vermiculite contribute to the absorption of free water, thixotropy and low density. The absorption of free water is proven to result in zero percentage test free water content, thixotropy is observed with the high value of the initial gel strength (Gi) in testing rheological properties and low density is proven in test weight specific

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several problems related to the loss of hydraulic seal in oilwells, causing gas migration and/or contamination of the production zone by water, have been reported. The loss of the hydraulic seal is a consequence of cracks which can be occasioned either by the invasion of gas during the wait on cement or by the expansion of the casing causing the fracture of the cement sheath. In case of the pressure of the formation is higher than the pressure in the annulus, gas can migrate into the slurry and form microannulus, which are channels where gas migrates after the cement is set. Cracks can be also occasioned by the fracture of the cement sheath when it does not withstand the thermal and dynamic loads. In reservoirs where the oil is heavy, steam water injection operation is required in order to get the oil flowing. This operation increases the temperature of the casing, and then it expands and causes the fracture of the cement sheath in the annulus. When the failures on the cement are detected, remedial cementing is required, which raise costs caused by the interventions. Once the use of cement in the construction civil sector is older than its use in the petroleum sector, it is common to bring technologies and solutions from the civil construction and apply them on the petroleum area. In this context, vermiculite, a mineral-clay widely encountered in Brazil, has been used, on its exfoliated form, in the civil construction, especially on the manufacture of lights and fireproof concretes with excellent thermal and acoustical properties. It has already been reported in scientific journals, studies of the addition of exfoliated vermiculite in Portland cements revealing good properties related to oilwell cementing operations. Thus, this study aimed to study the rheological behavior, thickening time, stability and compressive strength of the slurries made of Portland cement and exfoliated vermiculite in 5 different compositions, at room temperature and heated. The results showed that the compressive strength decreased with the addition of exfoliated vermiculite, however the values are still allowed for oiwell cementing operations. The thickening time of the slurry with no exfoliated vermiculite was 120 min and the thickening time of the slurry with 12 % of exfoliated vermiculite was 98 min. The stability and the rheological behavior of the slurries revealed that the exfoliated vermiculite absorbed water and therefore increased the viscosity of the slurries, even though increasing the factor cement-water. The stability experiment carried out at 133 ºF showed that, there was neither sedimentation nor reduction of the volume of the cement for the slurry with 12 % of exfoliated vermiculite. Thus, the addition of exfoliated vermiculite accelerates the set time of the cement and gives it a small shrinkage during the wait on cement, which are important to prevent gas migration

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The northeastern region of Brazil has a large number of wells producing oil using a method of secondary recovery steam injection, since the oil produced in this region is essentially viscous. This recovery method puts the cement / coating on thermal cycling, due to the difference in coefficient of thermal expansion between cement and metal coating causes the appearance of cracks at this interface, allowing the passage of the annular fluid, which is associated with serious risk socioeconomic and environmental. In view of these cracks, a correction operation is required, resulting in more costs and temporary halt of production of the well. Alternatively, the oil industry has developed technology for adding new materials in cement pastes, oil well, providing high ductility and low density in order to withstand the thermo-mechanical loads generated by the injection of water vapor. In this context, vermiculite, a clay mineral found in abundance in Brazil has been applied in its expanded form in the construction industry for the manufacture of lightweight concrete with excellent insulation and noise due to its high melting point and the presence of air in their layers lamellar. Therefore, the vermiculite is used for the purpose of providing low-density cement paste and withstand high temperatures caused by steam injection. Thus, the present study compared the default folder containing cement and water with the folders with 6%, 8% and 10% vermiculite micron conducting tests of free water, rheology and compressive strength where it obtained the concentration of 8 % with the best results. Subsequently, the selected concentration, was compared with the results recommended by the API standard tests of filtered and stability. And finally, analyzed the results from tests of specific gravity and time of thickening. Before the study we were able to make a folder with a low density that can be used in cementing oil well in order to withstand the thermo-mechanical loads generated by steam injection

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gas migration during the cementing of wells is one of the main problems of oil wells engineering. Its occurrence can cause severe problems since shortly to loss of control of the well after cementation. Recently, 20/04/2010 In an accident of major proportions in the Gulf of Mexico, among other factors, faulty cementing operation provided the gas migration, causing the accident, in which 11 people died and 17 were injured occurred. Besides the serious consequences that can be caused by gas migration, remediation of the problem, which is made by injecting cement in damaged areas, usually involves additional costs and is not always effective. Therefore, preventing gas migration to be preferred. Some methods are used to prevent the migration of the pressurized gas as the annular space, application of pressure pulses, reducing the height of the cement column compressible cement pastes of low permeability, pastes and to control free filtered water, and binders of thixotropic cement expandable and flexible. Thus, the cement pastes used to prevent gas migration must meet the maximum these methods. Thus, this study aimed to formulate a cement paste to prevent gas migration, using the expanded vermiculite, and evaluate the behavior of the folder trials necessary for use in oil wells. Free water content, rheological properties, compressive strength, loss of liquid phase sedimentation of solids, specific weight, thickening time and gas migration: The following tests were performed. The results show that meets the specifications paste formulated for use in oil wells and the use of expanded vermiculite contribute to the absorption of free water, thixotropy and low density. The absorption of free water is proven to result in zero percentage test free water content, thixotropy is observed with the high value of the initial gel strength (Gi) in testing rheological properties and low density is proven in test weight specific

Relevância:

70.00% 70.00%

Publicador:

Resumo:

They are in this study the experimental results of the analysis of thermal performance of composite material made from a plant matrix of polyurethane derived from castor oil of kernel of mamona (COF) and loading of clay-mineral called vermiculite expanded. Bodies of evidence in the proportions in weight of 10%, 15% and 20% were made to determine the thermal properties: conductivity (k), diffusivity (ά) and heat capacity (C), for purposes of comparison, the measurements were also performed the properties of polyurethane of castor without charge and also the oil polyurethane (PU), both already used in thermal insulation. Plates of 0.25 meters of material analyzed were manufactured for use as insulation material in a chamber performance thermal coverage. Thermocouples were distributed on the surface of the cover, and inside the material inside the test chamber and this in turn was subjected to artificial heating, consisting of a bank of incandescent lamps of 3000 w. The results obtained with the composite materials were compared with data from similar tests conducted with the camera alone with: (a) of oil PU, (b) of COF (c) glass wool, (d ) of rock wool. The heat resistance tests were performed with these composites, obtaining temperature limits for use in the range of 100 º C to 130 º C. Based on the analysis of the results of performance and thermal properties, it was possible to conclude that the COF composites with load of expanded vermiculite present behavior very close to those exhibited by commercial insulation material

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Actually, surveys have been developed for obtaining new materials and methodologies that aim to minimize environmental problems due to discharges of industrial effluents contaminated with heavy metals. The adsorption has been used as an alternative technology effectively, economically viable and potentially important for the reduction of metals, especially when using natural adsorbents such as certain types of clay. Chitosan, a polymer of natural origin, present in the shells of crustaceans and insects, has also been used for this purpose. Among the clays, vermiculite is distinguished by its good ion exchange capacity and in its expanded form enhances its properties by greatly increasing its specific surface. This study aimed to evaluate the functionality of the hybrid material obtained through the modification of expanded vermiculite with chitosan in the removal of lead ions (II) in aqueous solution. The material was characterized by infrared spectroscopy (IR) in order to evaluate the efficiency of modification of matrix, the vermiculite, the organic material, chitosan. The thermal stability of the material and the ratio clay / polymer was evaluated by thermogravimetry. To evaluate the surface of the material was used in scanning electron microscopy (SEM) and (BET). The BET analysis revealed a significant increase in surface area of vermiculite that after interaction with chitosan, was obtained a value of 21, 6156 m2 / g. Adsorption tests were performed according to the particle size, concentration and time. The results show that the capacity of removal of ions through the vermiculite was on average 88.4% for lead in concentrations ranging from 20-200 mg / L and 64.2% in the concentration range of 1000 mg / L. Regarding the particle size, there was an increase in adsorption with decreasing particle size. In fuction to the time of contact, was observed adsorption equilibrium in 60 minutes with adsorption capacity. The data of the isotherms were fitted to equation Freundlich. The kinetic study of adsorption showed that the pseudo second- order model best describes the adsorption adsorption, having been found following values K2=0,024 g. mg-1 min-1and Qmax=25,75 mg/g, value very close to the calculated Qe = 26.31 mg / g. From the results we can conclude that the material can be used in wastewater treatment systems as a source of metal ions adsorbent due to its high adsorption capacity

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Among the various layered silicates, vermiculite has been used as one of the adsorbent material by presenting the ion exchange capacity which facilitates the removal of organic compounds which are potential pollutants in relation to the water surface. The importance of the modification of clay minerals by hydrophobization with carnauba wax establishes the increase in oil removal capacity in aqueous medium, it contributes to a better environment for life in ecosystems. The vermiculite when expanded decreases its hydrophobicity requiring the use of a hydrophobizing leaving - the organoclay. In this work were used in the process of modifying the particle sizes of vermiculite -18+16, -16 +20 and -20 +35 #. Samples of vermiculite hydrophobized with carnauba wax and clay mineral without hydrophobizing were characterized with physicochemical analyzes and analytical. Techniques were used: thermal analysis (thermogravimetry and derivative thermogravimetry), infrared spectroscopy, scanning electron microscopy, fluorescence rays - x adsorption tests. The TG / DTG was used to evaluate the thermal behavior of expanded vermiculite and carnauba wax and samples hidrofobizadas with percentages of 5, 10 and 15 % by weight of hydrophobizing. The results of FTIR confirmed increase of the characteristic signs of carnauba wax in samples hidrofobizadas as the greatest amount of hydrophobizing the clay mineral used in hydrophobization. Thermogravimetry and FTIR show based on the results that coating the surface of the vermiculite occur homogeneously. The data obtained by the technique of x-ray fluorescence with loss on ignition confirmed the results of thermogravimetric analysis in relation to the percentage of wax incorporated. The fluorescence indicates through information provided by the analysis shows that the material covered - is homogeneous. The mev inspection was used to texture and morphology of the clay mineral with and without carnauba wax. The scanning electron microscopy confirms the deposition of wax evenly over the surface of the mineral as indicated by the other techniques. To verify the adsorption capacity of the clay without hydrophobizing hydrophobized and used a fixed volume of water to 1 ½ liters in each experiment with 3 g to 50 g of oil sample. The results show that better extraction of oil for the material processed corresponds to 260 % relative to the weight of the sample coated and greater than 80 % of the oil drop in the system

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Civil e Ambiental - FEB

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A number of methods and products have been developed in order to eliminate or reduce the negative effects that hydrocarbons cause to the environment, including hydrophobic expanded vermiculite, used in oil residue filtering systems at gas stations. However, upon adsorbing organic compounds, the vermiculite is no longer used and is sent to landfills. The aim of the present study was to wash granular and powdered vermiculite containing oil lubricant in its pores with distilled water and solutions of 0.1% SDS surfactant and rhamnolipids, with the aim of removing the lubricant and the possibility of reusing the mineral. The greatest amount of lubricant removal was obtained through washing with 0.1% SDS and both granulometric forms. This may be associated to the industrial purification received by the surfactant. However, the biosurfactant is ecologically more viable due to its low toxicity and ease of degradability. In the readsorption tests, greatest adsorption was obtained with the granular vermiculite washed in SDS solution. In order to enable the reuse of the mineral, further tests are needed to enhance desorption/adsorption efficiency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O presente trabalho objetivou avaliar o enraizamento de estacas de P. nitida, utilizando dois tipos de estacas (com 1 e 2 gemas) e 4 doses de ácido indolbutírico (AIB) (0; 1.000; 3.000 e 5.000 mgL-1) com imersão lenta (5 segundos), com a finalidade de utilizá-las como porta-enxerto do maracujazeiro-azedo. O delineamento experimental utilizado foi inteiramente casualizado, em esquema fatorial 4x2 (concentrações de AIB x número de gemas na estaca), com quatro repetições de 10 estacas, totalizando 320 estacas. As estacas foram dispostas em bandejas plásticas, contendo vermiculita expandida de textura média, e mantidas sob sistema de nebulização intermitente, por 25 dias. As doses de AIB testadas influenciaram na sobrevivência, enraizamento das estacas e número e comprimento de raízes; e o número de gemas não influenciou no enraizamento de estacas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Produced water has lately aroused interest due to their high degree of salinity, suspended oil particles, chemicals added in various manufacturing processes, heavy metals and radioactivity sometimes. Along with oil and due to its high volume production, water production is one of the pollutants of most concern in the process of oil extraction. PAHs due to their ubiquity and their characteristics carcinogenic or mutagenic and teratogenic even have attracted the attention of every scientific society. Formed from the incomplete combustion of organic matter may be natural or anthropogenic. Some materials have been researched with the goal of cleaning up environmental matrices that may be contaminated by hydrocarbons. Among these materials researched various clays have been employed, of which highlights the vermiculite. The family of phyllosilicates, vermiculite for its potential and its high hydrophobic surface area has been a tool widely used in the decontamination of water in processes of oil spills. However, when it loses its capacity expanded hydrophobic having the necessity of using a hidrofobizante to make it organophilic. Among the numerous hidrofobizantes researched and used the linseed oil was the pioneer. In this study sought to evaluate the capacity of removal of PAHs using the vermiculite hydrofobized with linseed oil and wax also, for it was made use of the 24 full factorial design as the main tool for the experiments. We also evaluated the clay grain size (-20 +48 and -48 +80 #), the percentage of hidrofobizante applied (5 and 10%) and salinity of the water produced synthesized in our laboratory (35,000 and 55,000 ppm). The molecular fluorescence spectroscopy due to its sensitivity and speed was used to verify the adsorption capacity of clay, as well as gas chromatography served as an auxiliary technique to identify and quantify the PAHs in solution. In order to characterize the vermiculite was made use of X-ray fluorescence and X-ray diffraction. The infrared and thermogravimetry were essential to note hydrophobization and the amount of coating of clay. According to the fluorescence analysis showed that the test 12 was the best result in about 98% adsorption of fluorescent compounds, however the high salinity, the smallest particle size, the highest percentage of hidrofobizante and the use of linseed oil showed greater efficiency in the removal capacity of these hydrocarbons, in accordance with the trend followed by the analysis of the major factors of the factorial design. To verify the adsorption capacity of clay using a fixed volume of water produced synthetically, used as the test base 12, at their respective levels and factors. Thus, it was observed that after adding about 1 ½ liters of water solution produced synthetically, about 300 times its volume in mass, the vermiculite was able to adsorb 80% of fluorescent species present in solution

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nos últimos 20-30 anos polímeros biodegradáveis vêm sendo estudados e desenvolvidos e atualmente já são comercializados. Contudo, o custo, a processabilidade e algumas propriedades ainda dificultam a penetração desses polímeros no mercado e a competição com as chamadas commodities. Não são poucos os autores que se dedicam a desenvolver aditivos e formulações para superar essas limitações. Desta forma, esta Tese se dedicou ao desenvolvimento de compósitos de Ecobras, fabricado pela Basf e comercializado pela Corn Products, utilizando como carga mineral resíduo da extração da bauxita, no município de Santa Luzia/PB, o qual consiste em sua totalidade de vermiculita. Esta vermiculita foi quimicamente modificada com sais de alquil fosfônio para melhorar a compatibilidade com a matriz polimérica e também espaçar as camadas de aluminossilicato. De fato, a modificação com o brometo de hexadecil tributil fosfônio resultou na esfoliação da vermiculita tornando-a potencialmente apropriada para a obtenção de nanocompósitos. A preparação dos compósitos foi realizada pelo método de intercalação no estado fundido e foram comparadas a utilização da câmara interna de mistura e da mini extrusora de dupla rosca, sendo esta última mais eficaz na dispersão da vermiculita, conforme revelado pela microscopia eletrônica de varredura, difração de raios-X e reometria de placas. O grau de dispersão também foi influenciado pela estrutura química do modificador da vermiculita e pelo teor dessa carga incorporada à matriz. Teores mais elevados levaram a formação de aglomerados, enquanto a modificação da carga implicou na formação de micro e nanocompósitos. Ainda houve alterações das propriedades térmicas com aumento dos valores da temperatura de transição vítrea, de cristalização e fusão, embora o grau de cristalinidade tenha sido mantido. Nitidamente, foram obtidos materiais mais rígidos, com maior módulo e menor capacidade de deformação. Cerca de 58% de perda de massa foi observada para os micro e nanocompósitos obtidos após 17 semanas de enterro em solo simulado para avaliação da biodegradabilidade, valor bem próximo ao Ecobras puro. De modo geral, a incorporação das diferentes vermiculitas retardou nas primeiras semanas a biodegradação, provavelmente em função de modificações na estrutura cristalina, conforme sugerido pelos maiores valores de temperatura de fusão observados durante o acompanhamento do processo de biodegradação. No entanto, após 7 semanas os perfis de biodegradação dos micro e nanocompósitos se aproximaram bastante do Ecobras puro. Desta forma, foi possível nesta Tese obter um nanocompósito de Ecobras com vermiculita modificada com brometo de hexadecil fosfônio utilizando ferramentas comuns de processamento no estado fundido com biodegradabilidade próxima ao polímero de partida, porém mais rígido e menos deformável